
XB256

Expanded Graphics for TI Extended BASIC

by Harry Wilhelm

Copyright 2013 by Harry Wilhelm

Free distribution only

XB256

TABLE OF CONTENTS

INTRODUCTION - - - - - - - 2
Equipment required - - - - - - 2
Differences from Extended BASIC - - - 2
Loading XB256 - - - - - - 3

USING THE SUBROUTINES - - - - - 3
COMMANDS- - - - - - - - 4

Turn off XB256 (OFF) - - - - - 4
Turn on XB256 (XB256) - - - - - 4

SELECTING THE SCREEN - - - - - - 4
Screen1 (SCRN1) - - - - - - 4
Screen2 (SCRN2) - - - - - - 4

COLOR AND CHARACTER PATTERNS IN SCREEN 2 - - 4
Define colors (COLOR2) - - - - - 4
Define characters (CHAR2) - - - - - 5
Get character pattern (CHPAT2) - - - - 5
Load character set (CHSET2) - - - - 5
Large character set (CHSETL) - - - - 5

SUBROUTINES FOR SCROLLING - - - - 5
Define window boundaries (WINDOW) - - - 5
Scroll up (SCRLUP) - - - - - - 6
Scroll down (SCRLDN) - - - - - 6
Scroll right (SCRLRT) - - - - - 6
Scroll left (SCRLLF) - - - - - - 6
Scroll pixel up (SCPXUP) - - - - - 6
Scroll pixel right (SCPXRT) - - - - - 7
Scroll pixel left (SCPXLF) - - - - - 7

MISCELLANEOUS SUBROUTINES - - - - 8
Highlight text (HILITE) - - - - - 8
Set early clock (EARLY) - - - - - 8
Display in 32 columns (DISPLY) - - - - 8
Read from VDP RAM (VREAD) - - - - 9
Write to VDP RAM (VWRITE) - - - - 9

APPENDICES - - - - - - - 10
Character Sets Used By CALL LINK(“COLOR2”) - - 10
116K VDP RAM MEMORY MAP WITH XB256 - - 10
Saving Stack Space - - - - - - 11

Page 1

XB256

INTRODUCTION

XB256 is a collection of assembly language subroutines that give the Extended BASIC
programmer much more access to the graphics capabilities built into the TMS 9918A video
display processor. No knowledge of assembly language is required to use XB256.
Programs are written completely in Extended BASIC, meaning they are both easy to write
and easy to understand. The average TI user can now take advantage of graphics
capabilities that were built into the computer, but never before available without having to
program in assembly language.

XB256 lets you select from two independent screens. Screen1 is the screen normally used
by Extended BASIC and is accessed exactly as described in the XB manual. Screen2 lets
you define 256 characters, compared to the 112 normally available to XB. Additionally,
you can use up to 28 double sized sprites using the patterns available to Screen1. You can
toggle between the two screens as desired and the graphics on each screen will be
preserved. When using Screen2 there are assembly equivalents that replace CHAR,
CHARPAT, COLOR, and CHARSET. Except for these subroutines, screen access in
Screen2 is by the usual Extended BASIC statements such as PRINT, SPRITE, ACCEPT,
etc.

There are scrolling routines that allow you to scroll screen characters left, right, up, or
down. Other routines let you scroll smoothly one pixel at a time to the left, right or
vertically. You can specify a window area for scrolling and leave the rest of the screen
unchanged.

There are some miscellaneous subroutines that let you hilight text, set the sprite early
clock, print on the screen using all 32 columns, and read from or write to the VDP RAM.

EQUIPMENT REQUIRED

XB256 has been tested with Classic 99 and Win994a. If you use vintage hardware, it
requires the TI-99/4A console, the Extended BASIC cartridge, the 32K memory expansion,
and a disk drive system.

DIFFERENCES FROM EXTENDED BASIC

When a program starts running in XB256 it defaults to Screen1. The program can then
select Screen1 or Screen2 as desired. The old screen is saved and the new screen takes its
place. When you break a program by pressing <Fctn 4> the display will automatically
revert to Screen1. After you break a program, you can type CON to continue. If you were
using Screen 2, XB256 will restore the screen just as it was when the program was
interrupted, although sprites are not restored.

Page 2

XB256

The memory available for programming is 24488 bytes which is the normal size for XB.
The stack space is reduced from 11840 bytes to 8808 bytes. The stack space is primarily
used to contain string data and subprogram names. There should be enough room for most
programming needs. You may have to adjust your programming style in order to conserve
stack space if your program is very long or uses a lot of strings. There is a section in the
appendices that describes how to save stack space.

CALL FILES(2) is automatically performed when XB256 starts. Do not use CALL FILES
because nothing useful will happen and it will reset pointers needed by XB256.

The "quit" key has been disabled. Instead, type "BYE" to return to the master title screen.

LOADING “XB256”

Select Extended BASIC from the TI master title screen. Place the program disk into a disk
drive (drive number "n"), type RUN "DSKn.XB256" and press <Enter>. XB256 loads
into low memory and then the loader is erased. XB256 can be renamed LOAD for
autoloading from drive 1. If you want to load XB256 and then RUN a program from the
loader, add “RUN “DSKn.PROGNAME to line 10 of the loader.

USING THE SUBROUTINES

XB256 contains 22 assembly language subroutines, which can be grouped in the following
categories:

• COMMANDS
• CHANGING THE SCREEN
• CHANGING COLORS AND CHARACTER DEFININTIONS IN SCREEN 2
• SUBROUTINES FOR SCROLLING
• MISCELLANEOUS SUBROUTINES

Except for the commands XB256 and OFF, all of these subroutines should be called from
within a running Extended BASIC program. No error message results when the
subroutines are called from the immediate mode, but nothing useful will result. Except as
noted, they can be used in either Screen1 or Screen2.

The subroutines are described in the next sections. The first line of each description shows
the correct syntax to use when calling the subroutine. Most of the subroutines require that
additional information be included after the name of the subroutine. This information is
supplied in the form of a parameter list. Be careful to include these parameters in the order
described, and not to mix strings and numbers. Sometimes there are optional parameters.
These optional parameters are shown enclosed in brackets. The purpose of each of the
parameters in the list is fully described. Numbers and strings can be constants, variables,
or elements of an array.

Page 3

XB256

COMMANDS

CALL LINK("OFF”)

Turns off the interrupt routine for XB256. This turns off the interrupt routine without
having to return to the master title screen. (Immediate mode)

CALL LINK("XB256”)

Turns the interrupt routine back on so XB256 is active. The loader does this when loading
XB256, so you would only use this if you turned off XB256 with CALL LINK(“OFF”) as
described above. (Immediate mode)

SELECTING THE SCREEN

CALL LINK(“SCRN1”)

Selects Screen1, which is the normal XB screen. This has no effect if you are already in
Screen1.

CALL LINK(“SCRN2”)

Selects Screen2, which is the enhanced graphics screen. This has no effect if you are
already in Screen2. When a program first RUNs, Screen2 is cleared, the character set for
Screen2 is loaded and the colors are set to white on dark blue.

COLOR AND CHARACTER PATTERNS IN SCREEN 2

There are five assembly language subroutines used to modify the colors and patterns
defining the characters in Screen 2. These only effect graphics in Screen2, but can be
called from Screen1 if you want to predefine colors, characters, etc. before changing to
Screen2. Likewise, when in Screen2 you can call the XB subprograms COLOR, CHAR,
etc. if you want to predefine these before changing to Screen1. One exception is that you
should not CALL CHARSET while in Screen2. This will confuse XB256 into saving
Screen2 and restoring Screen1 because it thinks the program is breaking.

CALL LINK("COLOR2”,character-set,foreground-color,background-color [,...])

This is the equivalent of CALL COLOR in XB. This will change the color of the
characters used by Screen2. Foreground-color and background-color must be from 1 to

Page 4

XB256

16. Character-set is a number from 0 to 31. If character-set is less then 0 or greater than
31 then 32 is added or subtracted as needed to make it 0 to 31. If character set is 81 (think
9*9) then all 32 character sets are changed to the specified colors. Up to five character sets
can be changed with one call to COLOR2.

CALL LINK("CHAR2”,character-code,pattern-identifier[,...])

This is the equivalent of CALL CHAR in XB. It is used to change the patterns of the
characters used by Screen2. Character-code specifies the ASCII code of the character you
wish to define. It must be a value from 0 to 255. Pattern-identifier can be a string of any
length up to 255 bytes. (This is much longer than XB allows.) 16 bytes are used to define
each character. If the length of pattern identifier is not a multiple of 16, then zeros are
used for the remainder of the character being defined. CHAR2 will wrap around from
ASCII 255 and continue starting at ASCII 0 if the pattern identifier string is long enough.
Up to 8 character-codes and their pattern-identifier strings can be included in one call to
CHAR2

CALL LINK("CHPAT2”,character-code,string-variable[,...])

This is the equivalent of CALL CHARPAT in XB. It is used to return in string-variable
the 16 character pattern identifier that specifies the pattern of character-code. Character-
code must be from 0 to 255. Up to 8 patterns can be read in one call to CHPAT2

CALL LINK("CHSET2”)

This is the equivalent of CALL CHARSET in XB. This restores the character patterns for
characters 32 to 127 to the default patterns, which are the standard characters used in XB.
Then it copies those patterns into characters 160 to 255 but with the bits reversed so they
will appear in inverse video.

CALL LINK("CHSETL”)

This is a variation of CALL LINK(“CHSET2”). It is identical to CHSET2 except that the
capital letters are the larger capital letters seen in the TI title screen.

SUBROUTINES FOR SCROLLING

CALL LINK("WINDOW”,row1,col1,row2,col2)

Lets you specify a rectangular area on the screen where you would like scrolling to take
place. Row1 and Row2 are numbers from 1 to 24. Col1 and col2 are from 1 to 32. Row2

Page 5

XB256

and Col2 cannot be smaller than row1 or col1. CALL LINK(“WINDOW”) with no
parameters sets the full screen as the window. The full screen is the default window when
a program is run under XB256.

CALL LINK("SCRLUP”[,number])

Scrolls the characters contained in the window up one row. The vacated row at the bottom
will be filled with spaces. If any number is included then it will be a circular scroll with
the characters leaving the window row at the top reappearing in the row at the bottom.

CALL LINK("SCRLDN”[,number])

Scrolls the characters contained in the window down one row. The vacated row at the top
will be filled with spaces. If any number is included then it will be a circular scroll with
the characters leaving the window row at the bottom reappearing in the row at the top.

CALL LINK("SCRLRT”[,number])

Scrolls the characters contained in the window one column to the right. The vacated
column at the left will be filled with spaces. If any number is included then it will be a
circular scroll with the characters leaving the window column at the right reappearing in
the column at the left.

CALL LINK("SCRLLF”[,number])

Scrolls the characters contained in the window one column to the left. The vacated column
at the right will be filled with spaces. If any number is included then it will be a circular
scroll with the characters leaving the window column at the left reappearing in the column
at the right.

CALL LINK("SCPXUP”,string) (Screen2 only)

Scrolls the window up one pixel per call to SCPXUP. Before calling SCPXUP the window
should be cleared by filling it with spaces. Use CALL CLEAR if the window is the entire
screen or CALL HCHAR if it is smaller than the screen. The first time SCPXUP is called
and every 16th time afterward, you must provide a string to display. The string will be
truncated if it is longer than the window width. If it is shorter than the window width it
will be padded with spaces. The first call to SCPXUP must be followed 15 times with
CALL LINK(“SCPXUP”) without the string. Then provide the next string to display with
CALL LINK(“SCPXUP”,string), and so on. This routine uses the ASCII characters 32 to
127 and 160 to 255. The blank lines between each line of text are needed by the scrolling
routine and cannot be avoided. When finished with SCPXUP you should CALL
LINK(“CHSET2”) to restore the characters to their default patterns.

Page 6

XB256

Horizontal scrolling by single pixels.

The next two subprograms, SCPXRT and SCPXLF, allow you to scroll rows of characters
horizontally one or more pixel at a time. These are a little different from the scroll routines
you may be used to. They work by shifting the character patterns of the specified ASCII
characters to the right or left, but the actual characters are not moved. Before calling the
routines you set the screen by displaying the sequence of characters that you want to scroll.

For example, print ABCDABCDABCDABCDABCDABCDABCDABCD on the screen.
Four characters (ABCD) are used in this row. Then CALL LINK(“SCPXRT”,65,4,1)
would move the character patterns for the 4 characters starting at ASCII 65 (ABCD) one
pixel to the right. These are circular scrolls, meaning the bits shifted out of the last
character definition(in this example a D) are put into the first character definition. (in this
example an A). For clarity, letters were used in this example, but you would normally use
different ASCII codes. In a game these would probably be defined with CHAR2 to look
like mountains, trees, etc.

If you want to avoid circular scrolling and have a more complex landscape such as in
PARSEC you should make the length 33 and only print 32 characters on the screen. After
every eight calls to SCPXRT or SCPXLF you should redefine the hidden character using
CHAR2 so a new character pattern is ready to be scrolled onto the screen.

These routines permit “parallax scrolling” - you can scroll a row in the foreground faster
than the row behind it to give a 3 dimensional effect. The window boundaries have no
effect on these routines.

CALL LINK("SCPXRT”,ascii code,length,#pixels[,...])

Shifts the character definitions in the selected sequence of characters a specified number of
pixels to the left. The sequence of characters starts at ascii-code and is length characters
long. The number of pixels to be shifted is set by #pixels. Ascii-code can be from 0 to
255, length can be from 1 to 33, and #bits can be a number from 1 to 7. The sequence
given by ascii-code and length cannot go from 159 to 160. If it does an error message will
be issued. Up to 5 sequences of character patterns can be modified per call to SCPXLF.
(Screen2 only)

CALL LINK("SCPXLF”,ascii code,length,#pixels[,...]) (Screen2 only)

Shifts the character definitions in the selected sequence of characters a specified number of
pixels to the left. The sequence of characters starts at ascii-code and is length characters
long. The number of pixels to be shifted is set by #pixels. Ascii-code can be from 0 to
255, length can be from 1 to 33, and #bits can be a number from 1 to 7. The sequence
given by ascii-code and length cannot go from 159 to 160. If it does an error message will
be issued. Up to 5 sequences of character patterns can be modified per call to SCPXLF.
(Screen2 only)

Page 7

XB256

MISCELLANEOUS SUBROUTINES

There are five additional assembly language subroutines that address various limitations in
XB.

CALL LINK("HILITE”,row,column,length)

HILITE is used to toggle text to inverse video or back to normal. Row and column
determine the first character you want to hilite and length is the number of characters to
hilite. Row is from 1 to 24. Column is from 1 to 32. Length is from 1 to 256. Usually you
would hilite a single line, but the length can be up to 256 characters. HILITE will stop at
the lower right of the screen even if the combination of row, column and length should go
off the bottom of the screen. A character in the area being hilited with an ASCII of less
than 128 will have 128 will be added. A character in the area being hilited with an ASCII
greater than 127 will have 128 subtracted. Because characters 160 to 255 are defined in
inverse video when a program runs under XB256 or when CHSET2 is called, the hiliting
takes place automatically. A second CALL LINK(“HILITE”,row,column,length) will
restore text to back to normal. (Screen2 only)

CALL LINK(“EARLYC”,number[,...])

This routine sets the sprite early clock. With the early clock set, the sprite's location is
shifted 32 pixels to the left, allowing it to fade in and out on the left edge of the screen.
Number is the sprite number for which you want to set the early clock. Up to 16 sprites can
included in one call to EARLYC. Changing the color of a sprite will turn off the early
clock.

CALL LINK(“DISPLY”,row,col,string[,direction,repeat])

One of the limitations of Extended BASIC is that you are restricted to only 28 columns on
the screen. The two columns on both sides of the screen cannot be printed to directly. You
have to use HCHAR or VCHAR and even then it's not simple.. DISPLY addresses this
limitation. It will print a string starting at screen location row and col, and can use all 32
columns when it prints. By default it will print to the right. If it reaches the right hand
edge of the screen it will drop down one row, go to the left side of the screen and continue
printing. If it reaches the lower right corner of the screen it will continue printing at the
upper left corner of the screen. If you want DISPLY to print in a different direction you
can include the optional fourth parameter. A 1 will print each character one space to the
right; a 2 will print each character 2 spaces to the right. A 32 will print text vertically
down, 33 will print text diagonally down and to the right. A -32 will print text vertically
upwards, and so on. If you want DISPLY to print the string repeatedly (somewhat like
HCHAR or VCHAR) include the optional fifth parameter to tell DISPLY how many times
you want the text to be repeated. If you want to use the repeat function, you must include
the direction. Keep in mind that with DISPLY column 1 is the first column, while with
DISPLAY AT column 1 is the third column on the screen.

Page 8

XB256

CALL LINK(“VREAD”, memory address, # bytes, string[, . . .])

VREAD reads the specified number of bytes from the VDP ram into a string variable. Up
to 5 strings can read with one call to VREAD.

CALL LINK (“VWRITE”,memory address, string[, . . .])

VWRITE writes the string to the VDP ram starting at the specified memory address. Up to
8 strings can be read with one call to VWRITE.

VREAD and VWRITE are extremely versatile subroutines. The programmer can use them
to read a row from the screen, erase the row, input text using ACCEPT AT, then restore the
screen to its original state. You can open a small window, input text in the window, and
scroll just the window. If you want to dig more deeply into the TI than XB normally
allows, you can prepare strings ahead of time with a short utility that saves them in
MERGE format, then include them in your program to write character definitions, to load
sprite definitions and motions, to load a sound list to be played automatically, etc. It is
beyond the scope of this manual to go into detail on these more advanced uses although the
most important VDP addresses are listed below. The editor/assembler manual has
information on memory locations in the VDP and how to set up sprites and sound lists.

Page 9

XB256

Character Sets Used By CALL LINK(“COLOR2”)

Set ASCII Codes Set ASCII Codes Set ASCII Codes
-3(29) 0-7 8 88-95 19 176-183
-2(30) 8-15 9 96-103 20 184-191
-1(31) 16-23 10 104-111 21 192-199
 0 24-31 11 112-119 22 200-207
 1 32-39 12 120-127 23 208-215
 2 40-47 13 128-135 24 216-223
 3 48-55 14 136-143 25 224-231
 4 56-63 15 144-151 26 232-239
 5 64-71 16 152-159 27 240-247
 6 72-79 17 160-167 28 248-255
 7 80-87 18 168-175

16K VDP RAM MEMORY MAP WITH XB256

 0 – 767 Screen Image Table VDP address is given by (Row-1)*32+Column-1

 768 – 879 Sprite Attribute Table Room for 28 sprites – each sprite needs 4 bytes
vertical position-1,horizontal position,
char #+96,color-1(+128 for early clock)

1008 – 1919 Pattern Descriptor Table 8 bytes per character – char 30 starts at 1008
for Screen1

1920 – 2047 Sprite Motion Table 4 bytes per sprite.
Vertical velocity, horizontal velocity; sys use; sys use
(you can use 0 for the sys use value)

2048 – 2079 Color Table for Screen1 1 byte per character set – char set 0 = 2063
(foreground-1)*16+background-1

2392 – 11263 Value stack Used by XB for strings, etc.

11264 – 12287 Buffer used to store the screen
that is not being displayed.

12288 – 14335 Pattern Descriptor Table 8 bytes per character – char 160 starts at 12288
for Screen2 char 0 at 13056, and char 32 at 13312

14336 – 14367 Color Table for Screen2 1 byte per character set – char set 17 =14336
char set 0 = 14352

14368 – 14813 available VDP RAM can safely be used for sound lists, etc.

14814 – 16106 Disk buffering area for Files(2) Can be used for sound lists, etc. if you don't use disk
access.

Page 10

XB256

SAVING STACK SPACE

Normally Extended BASIC has 11840 bytes of stack space. The additional graphics
capabilities of XB256 require extra VDP memory which reduces the stack space to 8808
bytes. It is important to realize that the reduced stack space does not decrease the
maximum size that an Extended BASIC program can be. Both the program and all
numeric values generated by the program are contained in the 32K memory expansion.
Just like in XB, there are 24488 bytes of space available for a program. The only
reduction is in stack space. Most programs will run out of program space before running
out of stack space, but if you find that stack space is a problem the following may help.

Extended BASIC uses the stack for a number of purposes. After the prescan, it contains
a list of all the variable names used by the program. Both string variable names and
numeric variable names are in this list, as well as any array names. The stack space
needed for each entry in the list is eight bytes plus the number of characters in the name.
The prescan also generates a list of all the named subprograms such as JOYST, KEY,
LINK and so on. User defined subprograms are also contained in this list. The stack
space needed for each entry in this list is eight bytes plus the number of characters in the
name. Finally, every string used by the program is also stored in the stack.

One way to conserve stack space is to limit your use of named subprograms. The stack
space will not be significantly reduced if you use just a few named subprograms.
However, if you are accustomed to writing a lot of your own subprograms, you should
convert them to GOSUBs and ON GOSUBs wherever possible.

Stack space can be conserved by using as few numeric variables as possible, and by
keeping their names as short as possible. Use numeric constants when possible, since
constants require no entry in the list of variable names. Because the actual numeric
values are stored in the 32K expansion, numeric arrays require only one entry in the list
per array, so very little stack space is used.

Because the actual string is also stored in the stack, strings are the worst offender as far
as using up stack space.

Instead of using string variables, use string constants whenever possible. Following are
two examples that display text on the screen. The first example uses 28 bytes more stack
space than the second:

 10 A$="THIS IS A TEST"::CALL LINK("PRINT",1,1,A$) ! Uses more
stack space

 10 CALL LINK("PRINT",1,1,"THIS IS A TEST") ! Uses less stack
space

If you must use string variables, reuse the same variable name as many times as possible.

Page 11

XB256

Keep the number of string variables to a minimum. Following are two examples that
redefine characters. Because the second example reuses A$, it uses 30 bytes less stack
space than the first.

 10 A$="FFFFFFFFFFFFFFFF" :: CALL LINK("CHAR",40,A$)
 12 B$="FF818181818181FF" :: CALL LINK("CHAR",80,B$) !Uses more

stack space

 10 A$="FFFFFFFFFFFFFFFF" :: CALL LINK("CHAR",40,A$)
 12 A$="FF818181818181FF" :: CALL LINK("CHAR",80,A$) !Uses less

stack space

String arrays use a lot of stack space. If you are using string arrays and find that you are
running short of stack space try keeping the strings in DATA statements and have your
program READ them as needed. Following are two examples. The first reads strings
from a DATA statement into a string array, where they are ready for use. The second
uses 122 bytes less stack space by leaving the strings in the DATA statement until they
are needed. The latter method does have the disadvantage of being slightly slower.

 10 FOR I=1 TO 10 :: READ A$(I) :: NEXT I
 20 CALL LINK("PRINT",1,1,A$(7)) ! Print String7 on the screen
 100 DATA

String1,String2,String3,String4,String5,String6,String7,
String8,String9,String10

 10 FOR I=1 TO 7 :: READ A$:: NEXT I
 20 CALL LINK("PRINT",1,1,A$) ! Print String7 on the screen
 100 DATA

String1,String2,String3,String4,String5,String6,String7,
String8,String9,String10

Page 12

