JLP Programmer’s View

JLP primarily emulates standard General Instrument ROM and RAM. Therefore most JLP
programming consists of writing a standard Intellivision game and delivering it in standard
“BIN+CFG” format. Therefore, for most purposes, programmers need not take JLP into account
when programming.

JLP matters only when the game program needs one or more of the following:

Additional RAM,

Additional ROM beyond what fits in the Intellivision memory map,
Access to JLP’s hardware acceleration, or

Access to JLP’s flash storage.

The following sections describe how programs can access these additional features.
JLP Default Memory Map

In its default configuration, JLP provides the following memory map:

Address Range Description

$0000 — $OFFF Unavailable to JLP: used by Intellivision and peripherals

$1000 — $1FFF Unavailable to JLP: used by EXEC

$2000 — $2FFF Pages 0 and 2 — 15 available for ROM; $2000 page 1 used by ECS

$3000 — $3FFF Unavailable to JLP: used by GROM and GRAM

$4000 — $47FF Unavailable to JLP: used by ECS RAM

$4800 — $4FFF Available for ROM (special 2K segment)

$5000 — $6FFF Available for ROM

$7000 — $7FFF Pages 1 — 15 available for ROM; $7000 page 0 used by ECS

$8000 — $803F JLP Flash command registers

$8040 — $9F7F JLP RAM

$9OF80 — $9FFF JLP accelerator features

$8000 — $9FFF Available for ROM via special page-switch (see below)

$A000 — $DFFF Available for ROM

$E00Q — $EFFF Pages 0 and 2 — 15 available for ROM; $E000 page 1 used by ECS

$FO00 — $FFFF Available for ROM

The remainder of the document assumes JLP in its default configuration. Because firmware
defines most of JLP’s features, one can customize JLP for a specific application. For example,
JLP could easily provide 8-bit RAM at $D000 — $D3FF to support Chess and Triple Challenge,
although the firmware currently does not provide this.

New code should target JLP’s default feature set if at all possible.

JLP RAM

Feature Definition

JLP provides up to 8000 words of 16-bit RAM for game programs. JLP’s 16-bit RAM resides at
memory locations $8040 through $9F7F. The Intellivision and JLP both ascribe special
meaning to locations $8000 — $803F. JLP maps its hardware acceleration features to $9F80 —
$9FFF.

For MCUs that provide 8K words of RAM, the default JLP firmware fills $8040 to $9F7F with
16-bit RAM. For MCUs that provide only 4K words of RAM, the default JLP firmware fills $9000
— $9F7F with 16-bit RAM.

JLP 16-bit RAM behaves much like the 16-bit System RAM the Intellivision provides at $200 —
$35F. JLP’s RAM differs in the following ways:

e Fully supports the Gl bus protocol. All CP-1600 code will execute correctly from JLP
RAM, unlike the Intellivision System RAM.

e |tis accessible at all times except during Flash operations. (See the Flash Access
section below.) During Flash operations, the Intellivision cannot contact JLP.

e All Flash read and write operations copy data into or out of JLP RAM. To store or
retrieve data from Intellivision System RAM, you must copy it to/from JLP RAM.

Otherwise, JLP RAM looks and behaves exactly like General Instrument compatible 16-bit
RAM.

SDK-1600 Programming Notes

The file cart.mac provides a set of macros to simplify programming for JLP. The 42K memory
map it offers automatically sets up a large address space for ROM and includes support for
JLP’s RAM.

To allocate memory from one of the several pools of memory in an Intellivision system, use one
of the following macros:

8-bit 16-bit 8-bit | 16-bit

Macro Description Scratch | System ECS JLP
RAM RAM RAM | RAM
BYTEVAR Allocate a single byte variable. X X
BYTEARRAY Allocate an array of bytes X X
WORDVAR Allocate a single word variable X X
WORDARRAY Allocate an array of words X X
SCRATCH Allocate bytes in the Intellivision’s X

internal 8-bit Scratch RAM

Allocate words in the Intellivision’s
SYSTEM internal 16-bit System RAM X

Allocate bytes in the ECS’s 2K of

ECSRAM 8-bit RAM

Allocate words in JLP’s 16-bit
CARTRAM RAM X

Note that cart.mac will only allocate ECS memory if you specify REQ_ECS, or use the ECSRAM
macro.

Program Example

The following example declares a 96-word array in JLP RAM and a 5 word buffer in Intellivision
System RAM:

FL_BUF CARTRAM 96
FL_CMD SYSTEM 5

Additional SDK-1600 / Emulation Note

The JLP emulation provided by jzIntv (enabled with --jlp or --jlp-savegame switches) provides its
own RAM emulation at $8040 - $9F7F. Do not add code to your program to reserve RAM or
ROM in this address range. For example, do not do the following:

ORG $8040, $8040, “=RW”
RMB $9F80 - $8040

This will result in a section such as the following in your program’s .CFG file:

[memattr]
$8040 - $9F7F = RAM 16

This declares additional RAM that exists in parallel to the RAM provided by the JLP model in
jzIntv. The two will conflict, eventually resulting in trouble, especially when trying to use JLP
flash features.

JLP Paged ROM

Feature Definition

JLP can hold more ROM than the Intellivision can address at any one time. JLP makes this
additional ROM available to the Intellivision through page-switching.

JLP uses “ECS-style” paged ROM as its default page-switching model. ECS refers to the
Entertainment Computer System. This document refers to the format as ECS-style, as the ECS
is the main released peripheral to use this page-switching model. The game World Series
Major League Baseball is the only released game known to use this model. Some unreleased
Mattel titles such as Go For The Gold also use this model.

The Mattel ECS page-switching model works by dividing the address space into 4K-word
segments, and allowing you to map up to 16 different ROM images (or pages) into each of those
4K segments. That is, addresses $0000 — $0FFF form one segment, $1000 — $1FFF forms
another segment, $2000 — $2FFF forms yet another, and so on. Each 4K-word segment could
have one of 16 different pages visible at one time if that segment includes paged ROM.

In this model, you can consider non-paged ROM segments as filling all 16 pages with the same
data. Any attempt to page-switch these segments leaves the Intellivision with the same view of
memory. For example, the Intellivision EXEC resides at $1000 — $1FFF, and is not paged. So,

attempting to select $1000 page 0 leaves you with the same view of memory as selecting $1000

page 1, $1000 page 2 and so on.

The ECS EXEC, in contrast, consists of 3 paged ROM segments at $2000 page 1, $7000 page
0 and $E000 page 1. Therefore, other game ROMs (including JLP’s) can map into these
segments, either at different page numbers, or as non-paged ROM.

Non-paged ROMs may coexist with a paged ROM in the same 4K segment, so long as the
program switches off all paged ROMs in that segment. To accomplish this, the program merely
selects a page number for that segment that does not match any of the paged ROMs present in
that segment. For example, World Series Major League Baseball (WSMLB) has non-paged
ROM at $E000 that conflicts with the paged ECS ROM at $E000 page 1. WSMLB switches
segment $E000 to select page 0, which effectively switches off the ECS ROM in this range.
Most Intellivision games above 28K will likely use this model. The initialization code in
SDK-1600’s cart.mac automatically switches off the ECS EXEC ROMSs as part of its startup
sequence.

Banked ROMs behave as follows:

e Reset selects page 0 in all segments.

e A write to location $xFFF with a value of the form $xA5y selects page ‘y’ in segment
$x000 — $xFFF.

e A given paged ROM within a segment responds only when its page number is selected
for that segment. This allows multiple paged ROMs to coexist in the same segment at
different page numbers.

To specify a paged ROM to jzIntv and the JLP tools, you must use the BIN+CFG game format.
In the CFG, indicate the paged ROM segments by adding the PAGE keyword to one or more 4K
segments in the [mapping] section. Example:

; No paged ROMs:
[mapping]

$0000 - $OFFF = $5000
$1000 - $1FFF = $6000
$2000 - $2FFF = $A000
$3000 - $3FFF = $B000O

; Alternate version with paged ROM at $A000 pages 3 and 4:
[mapping]

$0000 - $OFFF
$1000 - $1FFF
$2000 - $2FFF
$3000 - $3FFF

$5000
$6000
$A000 PAGE 3
$A000 PAGE 4

For a more complex example, consider the configuration used by Go For The Gold. Go For The
Gold is an animated title screen that wraps four largely unmodified Mattel sports titles. It uses
page-switching to switch in one of the four titles based on the user’s selection. When used with
a suitably prepared binary image, the following configuration allows Go For The Gold to function
correctly(*) on JLP:

[mapping]

$0000 - $OFFF $5000 PAGE ©

$1000 - $1FFF = $6000

$2000 - $2FFF = $5000 PAGE 6 ; Skiing
$3000 - $3FFF = $5000 PAGE 5 ; Hockey
$4000 - $4FFF = $5000 PAGE D ; Boxing
$5000 - $5FFF = $5000 PAGE 8 ; Basketball

(*)GFTG is not bug free, at least when assembled from the released versions of Skiing, Hockey, Boxing and Basketball; it
introduces a timing glitch in Skiing’s initialization that causes it to occasionally launch incorrectly.

SDK-1600 Programming Note

AS1600 currently does not provide direct support for this page-switching model. It is possible to
use page-switching without AS1600 support; however, you must construct additional tooling to
do so. If you need more than 42K for your game, or need to use page-switching for other
purposes, please contact LTO for assistance. [This is no longer true; AS1600 now has native
support for paged ROMs. Details to be added here. Short version: “ORG addr:page” begins
assembling in a paged ROM section. Paged ROM only supported with BIN+CFG format.
Paged ROM segments are 4K words on 4K boundaries. —JZ 06-Nov-2014]

Program Example

The following code snippet disables the ROMs in the ECS by switching ROM segments $2000,
$7000 and $E000 all to page 15, which contains no ROM.

MVII #$2A5F, RO

MVO RO, $2FFF
MVII #$7A5F, RO
MVO RO, $7FFF
MVII #$EASF, RO
MVO RO, $EFFF

Special Page-Switch: JLP RAM vs. Additional ROM

Feature Definition

JLP allows you to switch JLP RAM and accelerator features on and off. While JLP RAM and
accelerator features are off, you can access ROM in this address space if your program maps
any ROM in this address range.

This feature exists primarily to accommodate existing software that requires ROM in the range
$8000 — $8FFF or $9000 — $9FFF, as well as to accommodate software that needs to work with
an Intellivision Keyboard Component, as the Keyboard Component maps its own 16K x 10-bit

RAM at $8000 — $BFFF. Most programs developed for JLP do not need this feature.

To switch JLP RAM and accelerator features off, write $6A7A to location $8034. To switch JLP
RAM and accelerator features back on, write $4A5A to location $8033.

Program Example
The following snippet turns JLP RAM off, then back on.

; Turn off JLP RAM
MVII #$6A7A, RO
MVO RO, $8034

; Turn on JLP RAM and accelerators

MVII #$4A5A, RO
MVO RO, $8033

JLP Multiply and Divide Accelerators

Feature Definition

The PIC24H MCU includes fast hardware multiply and divide support. JLP exposes its
hardware multiplier and divider to the Intellivision through a series of memory mapped registers,
mimicking a dedicated peripheral one might have found in an enhanced 80s machine.

Each of these mathematical accelerator functions works the same way: Write the arguments to
one pair of input locations, and read the results from another pair of output locations. Each
command takes its input from a different pair of locations, but writes its output to the same pair
of output locations: $9F8E, $9F8F.

JLP computes a new result when either input operand changes. Furthermore, it holds the input
operands and results indefinitely. This allows you to reuse an argument multiple times. See

how this helps in the example at the end of this section.

The following table lists all of the provided functions and the memory locations they reside in:

Name Describtion 1st 2nd Result in Result in
P oper oper $9F8F $9F8E
Signed 16-bit by signed 16-bit Upper 16 bits Lower 16 bits
MPYSS multiply into 32-bit result. $oF8e | $oF8l of product of product
Signed 16-bit by unsigned 16-bit Upper 16 bits Lower 16 bits
MPYSU multiply into 32-bit result. $OF82 | $9F83 of product of product
Unsigned 16-bit by signed 16-bit Upper 16 bits Lower 16 bits
MPYUS multiply into 32-bit result. $OF84 | $9F85 of product of product
Unsigned 16-bit by unsigned 16-bit Upper 16 bits Lower 16 bits
MPYUU multiply into 32-bit result. $OF86 | $9F87 of product of product
DIvss | Signed 16-bit by signed 16-bit $OF88 | $9F89 | Remainder | Quotient
divide with remainder.
DIVUU Unsigned 16-bit by unsigned 16-bit $9F8A | $9F8B | Remainder Quotient
divide with remainder

Interrupts and Atomicity

These accelerator features require multiple memory accesses to perform a single operation.
Furthermore, they all write their results to the same output locations. This presents a problem if
your program uses these features from both an interrupt and non-interrupt context. Unless you
take steps to ensure otherwise, the CP-1610 may take an interrupt right in the middle of code
that tries to use these accelerators.

You have two options: Only use the accelerators in a single context—always outside an

interrupt handler or always inside an interrupt handler—or make all uses of the accelerators
atomic with respect to interrupts. In other words, to use the accelerators from both interrupt and
non-interrupt contexts, you must make the uses in non-interrupt contexts uninterruptible.

The CP-1610 offers two ways to do this:

1. Use DIS and EIS to explicitly disable and re-enable interrupts. This works best for
longer sequences of instructions.
2. Use sequences of uninterruptible instructions (MVO, shifts) to block interrupts.

In most cases, you will want to use the first approach. That strategy works in all circumstances,
but it also consumes the most cycles. Here is an example that multiplies R@ x R1 into R3:R2:

DIS
MVO RO,

$9F80

; Disable interrupts
; First operand to MPYSS

MVO R1, $9F81 ; Second operand to MPYSS

MVI $9F8E, R2 ; Lower 16 bits of 32-bit result
EIS ; Enable interrupts after next MVI
MVI $9F8F, R3 ; Upper 16 bits of 32-bit result

This sequence is fully atomic with respect to interrupts. The EIS appears before the last MVI
because EIS jtself is an uninterruptible instruction, meaning that no interrupt can occur between
EIS and the instruction that follows it. By pulling EIS above the final MVI, we keep interrupts
disabled for the minimum amount of time.

You can use the second approach when you only need 16 bits of the result and want to
absolutely minimize the time you disable interrupts. For example, if you only need the lower 16
bits of RO x R1, the following sequence is atomic because MVO is uninterruptible:

MVO RO, $9F80 ; First operand to MPYSS
MVO R1, $9F81 ; Second operand to MPYSS
MVI $9F8E, R2 ; Lower 16 bits of 32-bit result

This can be useful if you know the result of your operation fits in 16 bits.

Program Example

The following example demonstrates converting a number to decimal using the unsigned divide
accelerator. This can be useful for displaying scores on-screen, for example.

DIVUU.num EQU $9F8A ; Numerator for the divide
DIVUU.den EQU $9F8B ; Denominator for the divide
DIVUU.quo EQU $9F8F ; Quotient

DIVUU.rem EQU $9F8E ; Remainder

; Decimalize the contents of RO, writing the five digits to the buffer @R4
MVII #10, R1

DIS ; Disable interrupts

MVO R1, DIVUU.den ; Set up the denominator for divides
MVO RO, DIVUU.num 50\

MVI DIVUU.rem, RO ; |- First digit (rightmost)
MVo@ RO, R4 H

MVI DIVUU.quo, RO

MVO RO, DIVUU.num 50\

MVI DIVUU.rem, RO ; |- Second digit

MVO@ RO, R4 5/

MVI DIVUU.quo, RO

MVO RO, DIVUU.num 50\

MVI DIVUU.rem, RO ; |- Third digit

MVo@ RO, R4 H

MVI DIVUU.quo, RO

MVO RO, DIVUU.num 50\

MVI DIVUU.rem, RO ; |- Fourth digit

MVO@ RO, R4 5/

MVI DIVUU.quo, RO

MVO RO, DIVUU.num ;0\

EIS ;| (Enable interrupts after MVI)
MVI DIVUU.rem, RO ; |- Fifth digit (leftmost)

MVO@ RO, R4 5/

This particular example reuses the argument ‘10’ in the denominator of the divide for all 5 digits,
resulting in a considerable savings.

JLP CRC-16 Accelerator

Feature Definition

CRC stands for Cyclic Redundancy Check. CRCs compute a hash function of a string of inputs
using specialized arithmetic that can then be used as a checksum. A small change in the input
leads to a large change in the output. Many common file formats and transmission protocols
use CRCs for this reason, as a small corruption will generate a large difference in CRC.
Random number generators often make use of CRCs and related codes for similar reasons.
You can read more about CRCs on Wikipedia here:

http://en.wikipedia.org/wiki/Cyclic redundancy check

JLP provides a CRC-16 accelerator with a fixed polynomial. CRC-16 means that it generates a
16-bit checksum / hash. Fixed polynomial means that JLP only computes one of the many
possible CRC-16 hash functions. JLP’s CRC is a right-shifting CRC with the polynomial
OxAD52. See the Reference Code section below to see exactly what that means via reference
Perl and assembly code.

Programs access the CRC-16 accelerator through 2 memory mapped registers:
e $9FFC: Write only. Write data to checksum to this location.
e $9FFD: Read-write. Write this location to initialize the checksum. Read this location to

get the current checksum after writing the data to checksum to $9FFC.

Games and other programs might use the accelerator a few different ways:

http://en.wikipedia.org/wiki/Cyclic_redundancy_check

1. Production test to verify the game ROM is programmed into JLP correctly.
2. Verify that data in JLP Flash was stored and retrieved correctly.
3. Generate a deterministic and repeatable set of “random” numbers.

The sections below explore each of those potential uses.

Note: The CRC-16 accelerator has similar atomicity concerns to the multiply and divide
accelerators, since it is a single resource that programs could conceivably use from both an
interrupt and non-interrupt context. See the “Interrupts and Atomicity” section above for a
detailed exploration of the issue.

Program Example: Data Verification

CRCs excel at detecting corruption in small blocks of data. In this mode, programs typically
compute the CRC over a block of data and compare it to a CRC value computed previously over
the same block of data. If the CRCs match, the program assumes the data is correct. If the
CRCs mismatch, the program knows the data is incorrect.

Production test code can use the accelerator to verify that each of the ROM segments contains
the expected ROM image. Currently shipping titles such as Christmas Carol incorporate
production test code that checksums each 4K ROM segment to verify its CRC.

Code that saves and loads data from JLP flash can verify that the data survived the round trip
by checking its CRC. When saving data to flash, the code computes the CRC and saves it with
the data. When retrieving data from flash, the code computes the CRC again and compares it
against the saved CRC.

Both of these uses benefit from a “block CRC”, that is code that reads an entire block of RAM or
ROM, and returns a checksum for that block. The following function implements a block CRC
suitable for both purposes.

;5 CRCle HA
55 e
;3 Compute a CRC-16 on a block of memory. Implements a right-shifting HA
;5 CRC with the polynomial @xAD52. This version uses JLP acceleration. HA
55 35
;3 INPUTS: CRC16 HH
i R1 Number of words to checksum N
55 R4 Base address to start checksum H
55 35
;5 INPUTS: CRCl6.1 M
Hi RO Initial checksum HH
Hi R1 Number of words to checksum H

Hi R4 Base address to start checksum H

) Pl

55 OUTPUTS 35

HH RO Final checksum H
H R4 Points past end of 4K segment HA
H R1..R3 unmodified HA
55 SESSSSS==sss=s=sssssss======)
CRC16 PROC

CLRR RO
@@1: MVO RO, $9FFD

PSHR R1

PSHR R2

PSHR R3

MVII #$9FFC, R2

SARC R1, 2
ANDI #$3FFF, R1
BNC @@even
MVI@ R4, RO
MVo@ RO, R2
@@even: BNOV @@no2
MVI@ R4, RO
MVO@ RO, R2
MVI@ R4, RO
MVO@ RO, R2
@@no2: BEQ @@done
@@loop:
MVI@ R4, RO
MVI@ R4, R3
MVO@ RO, R2
MVO@ R3, R2
MVI@ R4, RO
MVI@ R4, R3
MVo@ RO, R2
MVo@ R3, R2
DECR R1
BNEQ @@loop
@@done: MVI $9FFD, RO
PULR R3
PULR R2
PULR R1
JR R5

ENDP

Program Example: Deterministic Random Number Generator

In this model, the program needs to generate a sequence of “random” numbers that always
occur in the same order. This can be useful in a number of situations.

For example, consider a head-to-head puzzle game where each player gets a sequence of
puzzle pieces he or she must place. To keep the game fair, both players should receive the
same pieces in the same order. But, to keep the game interesting, the game should give a

different sequence of pieces in different games.

Or, perhaps you have a game engine with “random” elements, but you want to be able to record
demos by only recording player inputs. Doom’s engine worked this way. You can see its
deterministic random function here: http://spatula-city.org/~im14u2c/dl/m_random.c

To generate deterministic random functions with JLP’s CRC accelerator:

e Setup a “seed” in memory to denote the game’s notion of “current random number”.
e To generate the next random number, perform the following steps:

a. Copy the seed from RAM to location $9FFD

b. Write a fixed value to $9FFC

c. Copy the updated seed from $9FFD back to RAM.

e Use the updated seed as the next random number. If you need to scale it to a particular
range of values, you could use it as an input to an unsigned multiply (with the other input
being the range), and take the upper 16 bits of the product as the range-limited random
value.

The following code demonstrates. It assumes two players, with both seeds stored next to each
other in memory. NEXTRAND takes an argument in R1 specifying which player’s seed to fetch. It
returns the new random number in Re.

SEEDS SYSTEM 2 ; Allocate two random number seeds in System RAM

NEXTRAND PROC

ADDI #SEEDS, R1

MVI@ R1, RO ; Get player’s seed

MVO RO, $9FFD ; Use seed as CRC checksum value

CLRR RO 5 _ Write fixed value © to update checksum
MVO RO, $9FFC ; /

MVI $9FFD, RO ; Get updated CRC checksum

MVO@ RO, R1 ; Store as player’s seed

JR R5 ; Return

ENDP

That'’s fairly straightforward. Two caveats:

http://spatula-city.org/~im14u2c/dl/m_random.c

1. The random sequence this generates never changes. Starting with a different seed just
time-shifts the sequence.
2. The sequence repeats after 65535 steps.

Neither of these is a complete deal breaker. For one thing, not all games are sensitive to either
of these parameters. Doom, for example, has a single sequence with only 256 values in it, and
this sequence repeats after 256 steps.

For games that are sensitive to either or both of these properties, you have a few options.

1. Add a second word in RAM that stores the “fixed value” to update the seed with. Pick
this “fixed value” randomly at the same time you pick your starting seed. This will give
you a different path through the 65535 seed values even if you start with the same seed.
(Note: Do not use $5AA4 as the fixed value—it generates a very short cycle.)

2. Combine the output of multiple deterministic random number generators running at
different rates. For example, add a second seed, and update that seed every seventh
iteration. XOR the values of both seeds to get your final random number. (7 is relatively
prime to 65535, so the resulting sequence will be 7 times longer than the base
generator’s sequence. You can pick larger number that’s relatively prime to 65535 to get
a longer sequence.)

3. Combine both 1 and 2 together.

The following code demonstrates the first option, as it is simpler and is straightforward to
implement. The second and third options are expensive enough that you might consider a
different approach than the CRC-16 accelerator.

SEEDS SYSTEM 2 ; Allocate two random number seeds in System RAM
SALT SYSTEM 1 ; Random value that perturbs the random number sequence

NEXTRAND PROC

ADDI #SEEDS, R1

MVI@ R1, RO ; Get player’s seed

MVO RO, $9FFD ; Use seed as CRC checksum value
MVI SALT, RO ; _ Write fixed value from SALT
MVO RO, $9FFC ; / to update checksum

MVI $9FFD, RO ; Get updated CRC checksum

MVO@ RO, R1 ; Store as player’s seed

JR R5 ; Return

ENDP

In any case, it's worth thinking about how much randomness you really need. For some
purposes, such as shuffling a deck of cards, you need a surprising amount of randomness to
ensure you can generate all 52! orderings with equal probability. For most others (look at
Doom, for example), you need surprisingly little.

https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#Pseudorandom_generators:_problems_involving_state_space.2C_seeding.2C_and_usage

Reference Code

The following functions define the exact CRC function JLP implements. The first is an assembly
function that replicates the block-CRC functionality demonstrated above, using a lookup table
for speed:

55 CRC1l6 H
55 35
;5 Compute a CRC-16 on a block of memory. Implements a right-shifting H
55 CRC with the polynomial ©OxAD52. Hi

) P

55 The CRC16T table has the original datum XORed in with the precomputed Hi

55 poly value so that we don't need to mask it out of our CRC. We can HA
55 Just SWAP and XOR and it'll cancel out. HA
55 35
55 INPUTS: CRC1l6 55
HH R1 Number of words to checksum N
55 R4 Base address to start checksum H
) ;)
55 INPUTS: CRC16.1 55
55 RO Initial checksum HA
H R1 Number of words to checksum HA
H R4 Base address to start checksum HA
55 35
55 OUTPUTS 55
HH RO Final checksum A
33 R4 Points past end of 4K segment H
55 R1..R3 unmodified H
55 SESSSSSSSSssssssSssssssSsSsSSSsssssSsSSsssSssssSSsssssssssssssssssssssssssss== 5
CRC16 PROC

CLRR RO
@@1:

PSHR R5

PSHR R3

PSHR R2

PSHR R1

MVII #$FF, R3
MVII #CRC16T,R5

@@loop:
XOR@ R4, RO H 8 Merge in next data word
MOVR RO, R2 ; 6 \
ANDR R3, R2 ; 6 |- Index into crcl6t[].
ADDR RS, R2 H 6 /

SWAP RO H 6 Shift left by 8

XOR@ R2, RO H 8 XOR in CRC update for lower 8
MOVR RO, R2 ; 6 \

ANDR R3, R2 ; 6 |- Index into crcl6t[].

ADDR RS, R2 H 6 /

SWAP RO H 6 Shift left by 8

XOR@ R2, RO H 8 XOR in CRC update for lower 8
DECR R1

BNEQ @@loop

PULR R1
PULR R2
PULR R3
PULR PC
ENDP

CRC16T PROC
DECLE $0000, $C035, $DACF, $1AFA, $EF3B, $2FOE, $35F4, $F5C1
DECLE $84D3, $44E6, $5E1C, $9E29, $6BES, $ABDD, $B127, $7112
DECLE $5303, $9336, $89CC, $49F9, $BC38, $7COD, $66F7, $A6C2
DECLE $D7D@, $17E5, $@D1F, $CD2A, $38EB, $F8DE, $E224, $2211
DECLE $A606, $6633, $7CC9, $BCFC, $493D, $8908, $93F2, $53C7
DECLE $22D5, $E2E@, $F81A, $382F, $CDEE, $0DDB, $1721, $D714
DECLE $F505, $3530, $2FCA, $EFFF, $1A3E, $DAGB, $COF1, $00C4
DECLE $71D6, $B1E3, $AB19, $6B2C, $OEED, $5EDS, $4422, $8417
DECLE $16A9, $D69C, $CC66, $0C53, $F992, $39A7, $235D, $E368
DECLE $927A, $524F, $48B5, $8880, $7D41, $BD74, $A7SE, $67BB
DECLE $45AA, $859F, $9F65, $5F50, $AA91, $6AA4, $705E, $BO6B
DECLE $C179, $014C, $1BB6, $DB83, $2E42, $EE77, $FA8D, $34BS
DECLE $BOAF, $709A, $6A60, $AAS5, $5F94, $OFA1, $855B, $456E
DECLE $347C, $F449, $EEB3, $2E86, $DBA7, $1B72, $0188, $CI1BD
DECLE $E3AC, $2399, $3963, $F956, $0C97, $CCA2, $D658, $166D
DECLE $677F, $A74A, $BDBO®, $7D85, $8844, $4871, $528B, $92BE
DECLE $2D52, $ED67, $F79D, $37A8, $C269, $025C, $18A6, $D893
DECLE $A981, $69B4, $734E, $B37B, $46BA, $868F, $9C75, $5C40
DECLE $7ES51, $BE64, $A4OE, $64AB, $916A, $515F, $4BA5, $8B90
DECLE $FA82, $3AB7, $204D, $E@78, $15B9, $D58C, $CF76, $OF43
DECLE $8B54, $4B61, $519B, $91AE, $646F, $AASA, $BEA®, $7E95
DECLE $0F87, $CFB2, $D548, $157D, $EOBC, $2089, $3A73, $FA46
DECLE $D857, $1862, $0298, $C2AD, $376C, $F759, $EDA3, $2D96
DECLE $5C84, $9CB1, $864B, $467E, $B3BF, $738A, $6970, $A945
DECLE $3BFB, $FBCE, $E134, $2101, $D4CO, $14F5, $OEOF, $CE3A
DECLE $BF28, $7F1D, $65E7, $ASD2, $5013, $9026, $8ADC, $AAEQ
DECLE $68F8, $ASCD, $B237, $7202, $87C3, $47F6, $5DOC, $9D39
DECLE $EC2B, $2C1E, $36E4, $F6D1, $0310, $C325, $DIDF, $19EA
DECLE $9DFD, $5DC8, $4732, $8707, $72C6, $B2F3, $A809, $683C
DECLE $192E, $D91B, $C3E1, $03D4, $F615, $3620, $2CDA, $ECEF
DECLE $CEFE, $QECB, $1431, $D404, $21C5, $E1FO, $FBOA, $3B3F
DECLE $4A2D, $8A18, $90E2, $50D7, $A516, $6523, $7FD9, $BFEC

ENDP

This next implementation in Perl demonstrates updating the seed for a single 16-bit update,
without a lookup table:

##f ======================================ss=s================s=ss========== ##
CRC16 Compute JLP CRC-16: Given crc + data, compute new crc.
##f == ##
sub crc16($$)

{

my ($crc, $data) = @_;
$crc ~= $data;

foreach (0 .. 15)

{
$crc = (($crc >> 1) ~ ($crc & 1 ? OxAD52 : ©)) & OXFFFF;

}

return $crc;

JLP Non-deterministic Hardware Random Number Generator

Feature Definition

For programs that want a non-deterministic (or, at least, a much less deterministic) random
number sequence, JLP provides a hardware random number generator. For this generator, JLP
monitors the Intellivision bus and mixes what it sees into its random number seed.

Because JLP’s MCU runs with a different clock than the Intellivision CPU, JLP’s alignment to the
Intellivision clock varies. JLP’s clock is at least 40 times as fast as the Intellivision’s. Therefore,
JLP can observe system-specific “garbage” on the Intellivision bus. Furthermore, JLP will
observe every user input to the system indirectly, since JLP sees every bus cycle that reads a
controller or other input, even though it doesn’t respond to that input.

Programs access JLP’s hardware random number generator by reading location $9FFE. JLP
will return the current random number state as a 16-bit number. JLP will also scramble the
random number with a CRC after the read, so that two consecutive reads return different
numbers.

JLP’s hardware random number generator collects entropy (aka. randomness) through variation
in the Intellivision bus cycles. This means that two random numbers collected close in time will
be more “related” than two random numbers collected further apart in time.

For most purposes, this doesn’t matter. JLP generates sufficiently random numbers for the vast
majority of games, regardless of how closely the game reads them in time. In the unlikely event
that your program needs to generate “cryptographically strong” random numbers, assume that
JLP collects very little entropy between consecutive reads of the random number register.

Program Example

The following example reads two random numbers from JLP into RO and R1:

MVI $9FFE, RO
MVI $9FFE, R1
JLP Flash

Feature Definition

JLP stores your program in the MCU’s on-chip flash. In most cases, the program image does
not fill the entire available flash. Rather than waste that storage space, JLP exposes it to
programs as non-volatile storage space.

The MCU’s flash storage consists of two related structures:

e Rows: Each row holds 96 16-bit words. You can only write row-sized blocks.
e Sectors: Each sector consists of 8 rows. You can only erase by the sector.

JLP’s flash support exposes this structure to the programmer through a set of memory mapped
command registers that allow you to copy JLP RAM to a row in flash, copy a row of flash to JLP
RAM, and erase a flash sector. The following table lists all the memory mapped registers
provided by JLP’s flash support:

Address Name Read/write Description
$8023 JF.first Read-only | Returns first valid flash row number
$8024 JF.last Read-only | Returns last valid flash row number
$8025 JF.addr Write-only | Address in JLP RAM to operate on
$8026 JF.row Write-only | Flash row to operate on
$802D JF.wrcmd Write-only | Copy JLP RAM to flash. Must write the value $C@DE.
$802E JF.rdcmd Write-only | Copy flash to JLP RAM. Must write the value $DEC®.
$802F JF.ercmd Write-only | Erase flash sector. Must write the value $BEEF.

Determining Flash Capacity From Software

The registers JF.first and JF.last give the range of valid flash row numbers on a given
device. These numbers vary based on the size of your program and the capacity of the MCU
(small, medium or large). The available storage is always a multiple of 8 rows, so there are no
“partial sectors.”

Sectors always start on a row number that is a multiple of 8, and consist of that row plus the 7
that follow it. The first valid row number is always a multiple of 8, and always corresponds to the
first row of the first erase sector. The last row number is always one less than a multiple of 8,
and always corresponds to the last row of the last erase sector.

Executing Flash commands

At a high level, each of the JLP flash commands has the same overall structure:

Set up the address in JLP RAM to operate on. (Not needed for JF.ercmd.)
Set up the row in flash to operate on.

Write a special “key value” to the command register for the desired command.
Wait for the operation to complete.

The last two steps are perhaps the most complicated. JLP flash operations can take up to
28ms to complete. During the JLP flash operation, JLP’'s MCU stalls execution, and JLP ceases
responding to the Intellivision.

Therefore, your program must take special steps to correctly handle flash commands:

e Execute the code that triggers the command and waits for its completion from the
Intellivision’s System RAM.

e Place the stack and interrupt service routines in System RAM if you enable interrupts.
e Do not access JLP RAM or ROM while the JLP flash command executes.

The following reference code demonstrates one way to achieve this. The function JF.INIT
copies a small (5 words) routine to Intellivision System RAM that triggers the command, waits
for its completion, and services interrupts. The function JF.CMD sets up and executes a flash
command. Call JF.INIT to set everything up before calling JF . CMD.

JF

JF.
JF.
.wrkey
.rdkey
JF.

JF
JF

JF

JF.
JF.

JF.

.wrcmd

rdcmd
ercmd

erkey

.write:

read:
erase:

SYSRAM

.SV
.SV.ISR
.SV.RO
.SV.R1
.SV.R2
.SV.R4
.SV.R5

@@__code:

EQU $8023

EQU $8024

EQU $8025

EQU $8026

EQU $802D

EQU $802E

EQU $802F

EQU $CODE

EQU $DECO

EQU $BEEF

DECLE JF.wrcmd, JF.wrkey ; Copy JLP RAM to flash row

DECLE JF.rdcmd, JF.rdkey ; Copy flash row to JLP RAM

DECLE JF.ercmd, JF.erkey Erase flash sector

SYSTEM 5 ; 5 words in Intv for support routine

CARTRAM 6 ; 6 words in JLP for register / ISR save

EQU JF.SV + ©

EQU JF.SV + 1

EQU JF.SV + 2

EQU JF.SV + 3

EQU JF.SV + 4

EQU JF.SV + 5
A

Copy JLP save-game support routine to System RAM 55

S

PROC

PSHR R5

MVII #0@__code, R5

MVITI #JF.SYSRAM, R4

REPEAT 5

MVI@ R5, RO 5 _ Copy code fragment to System RAM

MVO@ RO, R4 5/

ENDR

PULR PC

;3 === start of code that will run from RAM

MVO@ RO, R1 ; JF.SYSRAM + @: initiate command

ADD@ R1, PC ; JF.SYSRAM + 1: Wait for JLP to return

JR R5 ; JF.SYSRAM + 2:

MVO@ R2, R2 ; JF.SYSRAM + 3: __ simple ISR

JR R5 ; JF.SYSRAM + 4: /

;3 === end of code that will run from RAM

ENDP

35
55
55
55
35
35
35
35
35
55
55
55
35
35
35

)

JF.CMD Issue a JLP Flash command

INPUT
RO Slot number to operate on
R1 Address to copy to/from in JLP RAM
@R5 Command to invoke:

JF.write -- Copy JLP RAM to Flash
JF.read -- Copy Flash to JLP RAM
JF.erase -- Erase flash sector

OUTPUT
RO - R4 not modified. (Saved and restored across call)
JLP command executed

NOTES
This code requires two short routines in the console's System RAM.
It also requires that the system stack reside in System RAM.
Because an interrupt may occur during the code's execution, there
must be sufficient stack space to service the interrupt (8 words).

The code also relies on the fact that the EXEC ISR dispatch does
not modify R2. This allows us to initialize R2 for the ISR ahead
of time, rather than in the ISR.

35
35
35
35
35
35

Bl

35
35
35
35
35
35
35

)

CMD PROC
MVO R4, JF.SV.R4 5\
MVII #JF.SV.RO, R4 ;0
MVO@ RO, R4 ; |- Save registers, but not on
MVO@ R1, R4 ; | the stack. (limit stack u
MVo@ R2, R4 5/
MVI@ RS, R4 ; Get command to invoke
MVO R5, JF.SV.R5 ; save return address
DIS
MVO R1, JF.addr 5 _ Save SG arguments in JLP
MVO RO, JF.row ;5 /
MVI@ R4, R1 ; Get command address
MVI@ R4, RO ; Get unlock word
MVII #$100, R4 HEA\
SDBD ; |_ Save old ISR in save area
MVI@ R4, R2 ;0

MVO R2, JF.SV.ISR ; /

se)

MVII #JF.SYSRAM + 3, R2 HEAN

MVO R2, $100 ; |_ Set up new ISR in RAM
SWAP R2 .

MVO R2, $101 5/

MVII #$20, R2 ; Address of STIC handshake
JSRE R5, JF.SYSRAM ; Invoke the command

MVI JF.SV.ISR, R2 50\

MVO R2, $100 ; |_ Restore old ISR

SWAP R2 .

MVO R2, $101 5/

MVII #JF.SV.R®, RS 5\

MVI@ RS, RO ;0

MVI@ R5, R1 ; |- Restore registers
MVI@ RS, R2 HE

MVI@ RS, R4 H

MVI@ R5, PC ; Return

ENDP

The following subsections describe the flash commands themselves.

JF.rdcmd: Copy Flash to JLP RAM

This operation copies a single row of flash to the specified address in JLP RAM. JLP will fill 96
locations of JLP RAM starting at the address specified in JF.addr. Reads typically execute
very quickly (a few Intellivision CPU instruction cycles).

JLP drops the command if:

e The row number is out of range—ie. less than JF.first or greater than JF.last.
e One or more RAM addresses fall outside the JLP RAM range.

Empty rows of flash read as $FFFF.

JF.wrcmd: Copy JLP RAM to Flash
This operation copies 96 words of JLP RAM from the address specified in JF.addr into the row

of flash specified in JF.row. Once the write completes, the value will remain in flash until
erased. Writes can require up to 1.8ms to complete.

JLP drops the command if:

e The requested row of flash is not empty. You can not overwrite a row of flash without

erasing the sector that contains that row.
e The row number is out of range—ie. less than JF.first or greater than JF.last.
e One or more RAM addresses fall outside the JLP RAM range.

JF.ercmd: Erase a Flash Sector

This operation erases 8 rows (768 words) in flash. It erases the flash sector containing the row
specified in JF. row, as well as the other 7 rows that share the same flash sector. Sector
erasure takes up to 28ms to complete.

JLP drops the command if the row number is out of range—ie. less than JF.first or greater
than JF.last.

Flash Endurance: Wear Leveling

Unlike RAM, flash memory wears a little every time you erase or write it. Flash works by
depositing a charge on the gate of a transistor. There is no direct connection, however:
Insulator completely surrounds the gate, isolating it. Programming and erasing a bit requires
forcing a charge through the insulator. Over time, the insulator breaks down, reducing its ability
to hold the charge on the gate. For greater detail on how that process works, see here:

https://secure.wikimedia.org/wikipedia/en/wiki/Flash _memory#NOR flash

The flash provided by JLP’s MCU withstands a minimum of 10,000 erase/write cycles. That
means each bit cell can be erased and rewritten at least 10,000 times before it becomes
unreliable. Note that wear is physically localized to the sector involved: Erasing and writing
sector X does not wear on sector Y if they are different sectors.

Therefore programs should spread their writes around multiple flash sectors, so that they do not
wear out the flash prematurely. Because your program also cannot overwrite a row without first
erasing it, your program must do a little extra work to use the flash effectively.

Round Robin Writing with Data Versioning

The round robin approach works as follows: Always write to the least-recently-written row, or
lowest numbered row in case of ties. This automatically spreads writes evenly across all rows,
because it erases and rewrites rows in a fixed, rotating sequence. All rows see exactly the
same number of writes. This provides the best possible wear leveling.

The question then remains: How do we use this for saving game or other state? One effective
model treats the fotal set of saved game/program state as a single, monolithic structure. When
the program writes an updated copy of this structure, it writes to the next row (or rows) in the
rotation. When it reads the saved copy of the structure, it scans all the rows and finds and loads
the most recently written copy.

https://secure.wikimedia.org/wikipedia/en/wiki/Flash_memory#NOR_flash

That’s the basic idea.

The following structure provides a straightforward implementation:

e Add a data version field to your data:

o Thisis

separate from the program data itself. Typically, two words of version

information provide a large enough range of version numbers.
o Ensure version $FFFFFFFF is not a valid version number. This allows
distinguishing an empty flash row (due to erasure) from a row with game data.
e Provide two main functions, LOAD and SAVE, to manage the flash.

o LOAD:
[
[

o SAVE:

Scans the flash and return the most recently saved version of the data.

If none exists, it returns a default version of the data. For example, if you
intend to store a high score table, it would return a default high score
table with default high scores.

Record the row number of the next row in flash as the “next save”
location. The row after the most-recently-saved version is always the
“oldest” row. The “SAVE” code will use this information.

Compare the data to save with the most recently saved version.
(Optional, but highly recommended. Alternately, your program could
ensure it only calls SAVE with updated data.)
e If they are identical, do nothing. Stop here.
e |If they differ, continue.
Increment the version number of the data.
Erase flash sectors if necessary to make room for the data.
Write the data to flash.
Update the “next save” row to point after the saved data.

e Call LOAD at least once before any call to SAVE to initialize the flash and synchronize
your program with flash.

The LOAD and SAVE functions abstract the flash commands away from your program, turning
flash into a simple persistent data store that persists some or all of your program state. LOAD
ensures the program sees the persistent state from flash, while SAVE ensures flash stores the
most recent version of the data.

The following reference code implements the scheme above, with the following assumptions:

Save data fits in 94 words (one 96 word row, minus 2 words for version information)
Builds upon JF.CMD and JF.INIT reference code above.

Stack in System RAM.

FL_LOAD always calls JF.INIT.

The program calls FL_LOAD at least (and usually only) once before any call to FL_SAVE.

It need not call FL_LOAD more than once.

e The macros SYSTEM and CARTRAM allocate memory in System RAM and JLP RAM
respectively. These macros are part of cart.mac.

e All data stored across 32 rows in flash at the “bottom” of flash; remainder of flash open
for other uses. This allows a minimum of 320,000 rewrites, which should be more than
enough for most programs.

e The program only calls FL_SAVE if the data to save actually changes—for example, the
player achieves a new high score. FL_SAVE does not filter out redundant stores itself,
your code that calls it needs to.

No CRC or other protection on saved data.
The program copies data into / out of FL_BUF; the reference code otherwise uses it as
scratch space.

The routine FL_LOAD scans the 32 rows in its pool, looking for the most recent version of the
data. Itignores rows that have $FFFF in the upper word of the version number, thereby making
version numbers $FFFFO000 — $FFFFFFFF “invalid”. It starts version numbers at $00000000.
Given the limited number of erase/rewrite cycles the flash supports, it's impossible to reach the
range of invalid version numbers under normal circumstances.

Once it finds the highest version-number row, it copies that to FL_BUF, and stores some details
about its version number and row in flash. If the flash is empty, FL_LOAD zeroes out the FL_BUF.
Note: For your program, you may want to replace that last step with code that initializes the
buffer to some default value appropriate for your program.

The FL_SAVE code relies on the data structure initialized by FL_LOAD. The program packs the
information to store into FL_BUF and then calls FL_SAVE. FL_SAVE then copies the data into
flash and updates the data structures. If the row it’'s saving to is the the first row of a sector, it
erases the sector first.

Working buffer for rd/wr to flash
Portion of buffer with user data

FL_BUF
FL_DATA

FL_INFO

FL_INFO.brow
FL_INFO.bseq
FL_INFO.base

CARTRAM
EQU

CARTRAM
EQU
EQU
EQU

FL_INFO + @
FL_INFO + 1
FL_INFO + 3

'Best'’

row found in flash

'Best' sequence number (two words)
Base row to use in flash

FL_LOAD

@@__scan_loop:

R5

JE.INIT

)

Initialize flash routines

; Set up the base row for all flash activities.
; The reference code copies this out of JF.first, to make
; it easier to extend later by changing the value of

; FL_INFO.base.

MVI
MVO

; Initialize the best row and

MVII
MVII
MOVR
MVO@
COMR
MVO@
MVO@

JF.first,
FL_INFO.base

RO,

#$FFFF,
#FL_INFO,

R2,
R1,
R1

R1,
R1,

RO

R1
R2
R4
R4

R4
R4

)

)

B

)

FL_INFO.base must be a multiple of 8.

; Save base row

sequence number

FL_INFO.brow =

-1 (no best)

_ FL_INFO.bseq = 00000000
/

; Register allocation for @@__scan_loop:

N R4:
K R3:
K R2:
K R1:
K RO:

FL_BUF,

scratch

Rows remaining (32 downto 1)
FL_INFO
scratch

Flash sector number

#32,

FL_INFO.base,
#FL_BUF,
JF.CMD
JF.read

#FL_BUF,

R4,

#$FFFF,

@@__

next_row

R3
RO
R1

R4
R1
R1

)

)

; get base row of our pool

\
|- Read row RO into FL_BUF
/
\
|- skip row if MSW of row is FFFF
/

@@__new_best:

@@__next_row:

@@__leave:

@@__no_data:

@@__zero:

MOVR
INCR

CMP@
BNC

MVI@
BNEQ

CMP@
BNC

R2,
RS

R5,
@@__next_row
R4,

@@__new_best

R5,
@@__next_row

RS ;5 _
H

R5 = &FL_INFO.bseq

R1 ; Better than current best?
; Smaller: Nope.

R1 ; Load the LSW into R1
; Bigger: Yep

R1 ; MSW the same, so check LSW
; Smaller: Nope

; assume "equal to" can't happen.

MOVR
MVI

MVO@
MVO@
MVO@

INCR
DECR
BNEQ

MVI@
TSTR
BMI

MVII
CALL
DECLE

R2,
FL_BUF + @,
RO,
R4,
R1,

RO
R3
@@__scan_loop

R2,
RO
@@__no_data

#FL_BUF,
JF.CMD
JF.read

R5 ; R5 = &FL_INFO.brow
R4
R5 ; FL_INFO.brow = this row

R5 ; FL_INFO.bseq[@] (MSW)

R5 ; FL_INFO.bseq[1] (LSW)
HEAY
; |- Check up to 32 flash rows
H

RO ; \ (FL_INFO.brow)

; |- Did we find any saved
;5 / data in flash?

R1 ;N\
; |- Read 'best' row into FL_BUF

; Program's data now available at FL_DATA (aka FL_BUF + 2).

PULR

; No saved data found.

MVI
ADDI
MVO@

; NOTE:

PC

FL_INFO.base,
#31,
RO,

; Return to the caller.

Initialize buffer to default value.

RO ; \ Set "best row" to end of this
RO ; |- flash pool so that the next
R2 ; / write goes to first row.

The following loop merely zeros the buffer.

; Put different code here if your program requires it.

MVII
MVII
CLRR
MVO@
DECR
BNEQ

PULR
ENDP

#FL_BUF,
#96,

RO

RO,

R1

@@__zero

PC

R4
R1

R4

;5 FL_SAVE Copy data into JLP flash. i

;5 This code copies the 94 words of data at FL_DATA into JLP's flash H
;5 storage. It expects FL_INFO to contain valid information about the H
;5 state of flash, either from a previous call to FL_LOAD or FL_SAVE. N
B .;)
55 This code also expects the JF.CMD state to already be initialized. H
;; SESSSS=SSSSSSsSSsSssS=======)
FL_SAVE PROC
PSHR R5

; Increment to next row in pool, modulo 32

MVI FL_INFO.brow, RO ; Get absolute row number
SuB FL_INFO.base, RO ; Subtract off the base row
INCR RO 5 _ Next row, modulo 32
ANDI #31, RO ; /

ADD FL_INFO.base, RO ; Add back the base row
MVO RO, FL_INFO.brow ; Store updated row

; If we moved into the first row of a sector, erase the sector
MOVR RO, R1

ANDI #7, R1

BNEQ @@__no_erase

CALL JF.CMD
DECLE JF.erase
@@__no_erase:
; Increment sequence number for this record

MVI FL_INFO.bseq+@, R2 ; MSW if sequence number

MVI FL_INFO.bseg+l, R1 ; LSW if sequence number

ADDI #1, R1 ; Increment the sequence number
ADCR R2

MVO R2, FL_INFO.bseq+®

MVO R1, FL_INFO.bseg+1

; Insert sequence number in FL_BUF
MVO R2, FL_BUF + ©
MVO R1, FL_BUF + 1

; Now copy this into the row # that's in RO
MVII #FL_BUF, R1

CALL JF.CMD

DECLE JF.write

@@__leave PULR PC
ENDP

Simple Flags and Other Rarely Changing Data

If you need to store simple flags or values that do not change very often, you may be able to
avoid the complication of wear leveling. Values that will change less than 10,000 times during
the life of the cartridge do not need wear leveling.

Examples include:

Permanently unlocking phases of the game—eg. Christmas Carol’s “boss beaten” flag
Cartridge customization (serial number, purchaser’s name, etc.)
Production-test-passed flag

Game preferences—eg. controller settings, etc.

For these sorts of values, you can simply use the read, write and erase commands with each
update, and pick a flash row relative to JF.first to store the data.

Note: Left Turn Only recommends that you include a production test feature in your program.
This simplifies product testing, as the cartridges now can “test themselves.” LTO provides a
standard production test that you can integrate with your program if you desire. It uses flash in
the manner described above to store the “production test passed” flag.

Tooling and Development

Left Turn Only recommends using jzIntv and SDK-1600 to develop and test your game on the
computer of your choice. LTO also provides hardware adaptors to allow testing your JLP-based
game in-system using a CC3 alongside a JLP board.

[... work in progress ...]

