
Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 1 of 21

Setting up a Portable Intellivision Development Environment on
Your Android Device

Companion Volume – Running jzintv in a Graphical Environment

Written by Michael Hayes

intylab@yahoo.com

Date of Last Modification: December 6, 2018

(Note: it is assumed you have followed all the steps of the original volume and have a
text-based development environment working already.)

Introduction

You are now trying to write a program using JLP and discovered that jzintv4droid
doesn’t support JLP.

The graphical environment I mentioned before is no longer optional.

You still don’t want to root your device.

This document is for you.

Disclaimer

Same caveats apply as before. You are responsible for anything that happens to
yourself, your device, your personal property, your love life, or your job as a result of
the application of any information in this document. Standard data rates apply, etc.

You will need:

• An additional 150M free space.

mailto:intylab@yahoo.com

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 2 of 21

Step 1: Install another app onto your device.

We’re going to launch it too.

a. Go to the Google Play Store and install the following app:

• XServer XSDL

Provides video and audio for your Linux programs.

b. Launch XServer XSDL.

c. Download the font pack when prompted to do so. This will be the bulk of the
additional storage space you will need.

d. Don’t worry about making any configuration changes for now. Just wait until
you see a blue screen with white text.

Like Termux, XServer will continue running until you tell it to stop. You can do
that through your device’s Notifications.

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 3 of 21

Step 2: Fetch some wallpaper.

Little did you probably know, that blue screen with text is actually your
“wallpaper.” What you’re looking at is in fact your graphical display. The
only thing you see right now is called the “root window,” which is
analogous to your “desktop” in other Operating Systems.

So let’s get something to put there besides that blue screen.

a. If you have to download a .jpg file first, do that now.

b. Open Termux if it isn’t open already.

c. From your Home Folder (“~”, where you should already be at), enter the
command:

termux-storage-get wp.jpg

d. Select your file.

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 4 of 21

Step 3: Configure the Linux environment.

I assume you haven’t gotten too far ahead and installed another shell to
replace BASH. If you have, you will have to modify the following steps
appropriately.

Unlike with the text editor, where I let you choose any one you want, I will
specify a couple things for now that you could otherwise choose on your
own. Things would get too complicated if I didn’t do it this way. Once
you get settled, you can shop around for alternatives or configure what
you have.

a. Using your text editor, open “~/.bash_profile”

b. Add this line at the end:

export DISPLAY=:0 PULSE_SERVER=tcp:127.0.0.1:4712

c. Save and close.

d. Enter these commands:

pkg install x11-repo

pkg install man

pkg install aterm

pkg install xorg-twm

cp ../usr/share/X11/twm/system.twmrc ~/.twmrc

pkg install feh

export DISPLAY=:0

feh --bg-max wp.jpg

What are all these commands? First, “x11-repo” makes available a repository for
software packages that use “X.” What is X? That’s the name of a graphical
environment within Linux.

Second, “man” is short for “manual” and is a small program to display “man
pages” or manuals for various software packages.

Third, “aterm” is a “terminal emulator” that doesn’t take up too much space and
can be configured to look visually attractive. There are plenty of alternatives you
can shop around for later.

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 5 of 21

Next, “xorg-twm” is a small “window manager” that is good enough for our
purposes. What is a Window Manager? It is the program that draws “title bars”
above all the open windows and allows you to move them around, resize them,
and so on. If shopping around for such a thing seems like a new concept to you
and you’re familiar with Windows XP, then recall having had a choice between
“Windows Classic Style” and “Windows XP Style.” Similarly, in Windows 10, you
can choose between a full-screen Start Menu (as in Windows 8) or something
resembling earlier versions of Windows. Those options only let you choose
between a couple views; a Window Manager gives you a lot more flexibility than
that. To keep it from getting intimidating, I’ll hand-hold you as before.

The next command made a copy of the default TWM configuration and placed it
into your Home Folder. That way, we can make a few changes to it.

Next is a very small software package called “feh” which draws wallpaper onto
your Root Window. At the next step, we established a pointer to the currently-
running graphical display (adding that line to .bash_profile only executes that
command on future sessions). Finally, we ran “feh” to draw the wallpaper. If
you want to take a moment to admire it, go ahead.

e. Using your text editor, open “~/.twmrc”

f. Add these lines:

InterpolateMenuColors

OpaqueMove

RandomPlacement

“InterpolateMenuColors” creates a gradient color effect between color
definitions within the menu at the bottom of the .twmrc file. Right now, it will
probably look ugly to you, but you can come back later and modify the file to
make it look nice. Or if you don’t want it at all, “comment it out” by prefacing
that line with a “#”.

“OpaqueMove” lets you see the contents of the window as you’re dragging it to
move, same as “show window contents while dragging” in Windows. Believe it
or not, way back when twm was developed, only fast computers at the time
could redraw the windows within a single animation frame while they were
being moved. That’s why this option isn’t enabled by default. Without this line,
you will just see an outline while you are moving windows.

“RandomPlacement” simply places new windows somewhere on the screen,
same as what you’re probably used to. Without this line, an outline appears and
you have to decide where to put each new window that doesn’t have a
“geometry definition” (more on that in a moment).

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 6 of 21

g. Near the bottom of the .twmrc file, at the line that begins with “Aterm,” modify
the last part of the line to look like this (it’s all one line):

f.exec “exec aterm –geometry 160x55+0+0 –tr –trsb –
tint gray –fade 75 –tinttype true –fn 6x10 &”

So what’s all this? First, “geometry” specifies the size of the terminal window in
terms of characters: 160 characters wide, 55 characters tall, and all the way
against the top left corner of the display. With the tiny font we’ll be using, this
will fit onto a display with a resolution as small as 1024x768.

Next, “tr” will make the background translucent (!), “trsb” will make the scrollbar
translucent as well, and “tint gray” (“grey” is not recognized) combined with
“tinttype true” will color it in such a way that it looks truly translucent. We also
have “fade 75” which fades the text to 75% when the window doesn’t have
focus. This makes it easy enough to quickly tell whether the window is focused
or not, but also easy enough to read the text while not focused.

Now we have “fn 6x10” which is the size of each character in pixels. There are a
few choices here, but I’m assuming the worst-case scenario that you have a
lower-resolution display. My tablet is running Android 5.0.1, which is just barely
good enough to use Termux at all, and it has a resolution of 1280x800. Chances
are, your device’s display resolution is considerably higher than that. The font
size choices are: 7x14, 6x10, 6x13, 8x13, and 9x15.

Lastly, “&” is used to make scripts continue to run without waiting for the
command to finish executing. In X, that will be important, because if you launch
a program through aterm, you might want to run other commands without
waiting for that program to finish running.

h. Save and close.

i. Before we move on, if your “exec.bin” and “grom.bin” files are not all lower case,
then change them to lower-case with these commands:

mv EXEC.BIN exec.bin

mv GROM.BIN grom.bin

Ditto for “ECS.BIN” if applicable.

This is necessary because, as you may recall, Linux file and folder names are
case-sensitive, and jzintv won’t recognize these files if they are capitalized.

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 7 of 21

Step 4: Create keyboard mappings for jzintv.

The jzintv4droid app had touch-screen controls for your emulated
Intellivision controllers. Since we’re not using that app anymore, you will
need to define key bindings for jzintv.

a. Download “hackfile.cfg” onto your device. You can get it from here:
www.intellivision.us/intvgames/interface/interface.php

Scroll down to the section “How to configure Intellivision’s jzIntv” near the
bottom of the page, and you will find the link there. The filename is in all lower-
case, despite the hyperlink text.

b. Get this file into your Home Folder, using the below command and selecting the
downloaded file.

termux-storage-get hackfile.cfg

c. Open this file in your text editor and make all the necessary changes.

Obviously, it’s up to you how to configure it. Here is an image of an ECS
keyboard for your easy reference:

http://www.intellivision.us/intvgames/interface/interface.php

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 8 of 21

You will notice the following characters missing: ‘!’, ‘@’, ‘&’, ‘_’. Similarly, the
ECS keyboard doesn’t have the square/curly bracket keys, the pipe/backslash
key, or the back-apostrophe/tilde key. These could be useful for binding the
emulator functions “PAUSE”, “QUIT”, “RESET”, “SHOT” (screenshot), and/or
“BREAK” (to the debugger).

You can also exit out of jzintv by moving the focus back to the terminal window
that you launched it from and pressing Ctrl+C. This is good to know in case you
screw up the hackfile or forget to include it when launching jzintv. Normally,
you would exit by pressing F1, but Android keyboards typically do not have
Function keys.

Curiously, there is a ‘^’ key above the up arrow. GROM has an up arrow and a
left arrow where there should be a caret ‘^’ and underscore ‘_’, and indeed, if
you press ‘^’ in ECS BASIC, you will see the up arrow. That’s just trivial though.

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 9 of 21

Step 5: Install jzintv

You might be wondering why this is necessary since we downloaded jzintv
before and didn’t have to install it. As it turns out, only as1600 works.
There is also a precompiled binary called jzintv_batch which works but
doesn’t provide a graphical display, so it defeats the purpose.

a. Download the latest version of jzintv, which includes a makefile for Termux. It is
available with Joe’s permission here: atariage.com/forums/topic/283347-
portable-intybasic-development-environment/

b. Run the command:

termux-storage-get jzintv.zip

c. Select the file you downloaded.

d. Run these commands:

unzip jzintv.zip

pkg install make

pkg install sdl

pkg install sdl-dev

cd jzintv-20181014-1791/src

make –f Makefile.termux

This is the big moment of Truth: does jzintv compile? I had a lot of help from Joe
Zbiciak to get it working in Termux! First, I got it working on my phone, and then
I had to make a few more changes to get it working on my tablet (which as I
mentioned earlier is the “worst-case scenario” device for running Termux).

If you need help at this point, I can provide the precompiled binaries for your
device if your architecture is “arm” or “aarch64”, or if you need the modified
Makefile for another older device. To find out what your architecture is, simply
type “uname -m”

e. Finally, with jzintv compiled, run these commands:

cd

cp jzintv-20181014-1791/bin/as1600 .

cp jzintv-20181014-1791/bin/jzintv .

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 10 of 21

Step 6: Modify your Make Script

Since JLP support is likely the reason you’re reading this, I’m going to
assume you want that in your script. We’re also going to put jzintv’s
debugger functions to good use.

Note: there is another Companion Volume, where I discuss maintaining
multiple projects in this new environment. Skip this step if you have done
that already.

a. Using your text editor, open the file “~/m.sh”

b. In the line that launches intybasic_termux, add the switch “--jlp” after
“intybasic_termux”.

c. In the line that launches as1600, add these switches, substituting “bnc” with
your project filename, before “-o”:

-j ./bnc.smap –s ./bnc.sym –l ./bnc.lst -m

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 11 of 21

Step 7: Create a couple more scripts

a. Create a new file called “~/r.sh” using your text editor (‘r’ for “Run”).

b. Enter the following lines, again substituting “bnc” with your project filename:

#!/data/data/com.termux/files/usr/bin/bash

echo “Blix & Chocolate Mine for Intellivision”

echo ---------------------------------------

echo 1. Debug off, JLP off, ECS off

echo 2. Debug off, JLP off, ECS on

echo 3. Debug off, JLP on, ECS off

echo 4. Debug off, JLP on, ECS on

echo 5. Debug on, JLP off, ECS off

echo 6. Debug on, JLP off, ECS on

echo 7. Debug on, JLP on, ECS off

echo 8. Debug on, JLP on, ECS on

read var

case $var in

1) jzintv --kbdhackfile=hackfile.cfg –z1 –b8 -
a11025 bnc.bin;;

2) jzintv --kbdhackfile=hackfile.cfg –z1 –b8 -
a11025 –s1 bnc.bin;;

3) jzintv --kbdhackfile=hackfile.cfg –z1 –b8 -
a11025 --jlp-savegame=bnc.sav bnc.bin;;

4) jzintv --kbdhackfile=hackfile.cfg –z1 –b8 -
a11025 --jlp-savegame=bnc.sav –s1 bnc.bin;;

5) jzintv --kbdhackfile=hackfile.cfg –z1 –b8 -
a11025 --src-map=bnc.smap --sym-file=bnc.sym –d
bnc.bin;;

6) jzintv --kbdhackfile=hackfile.cfg –z1 –b8 -
a11025 --src-map=bnc.smap --sym-file=bnc.sym –d –s1
bnc.bin;;

7) jzintv --kbdhackfile=hackfile.cfg –z1 –b8 -
a11025 --src-map=bnc.smap --sym-file=bnc.sym –d --jlp-
savegame=bnc.sav bnc.bin;;

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 12 of 21

8) jzintv --kbdhackfile=hackfile.cfg –z1 –b8 -
a11025 --src-map=bnc.smap --sym-file=bnc.sym –d --jlp-
savegame=bnc.sav –s1 bnc.bin;;

*) echo Not one of the options. Goodbye.

esac

c. Save and close.

d. Create another file called “~/x.sh” and enter these lines:

#!/data/data/com.termux/files/usr/bin/bash

~/.fehbg

twm &

What is this script? This is what I use before I enter the graphical environment.

When we ran “feh” earlier, it generated a script file in the Home Folder
called .fehbg (there is an option to suppress that) which repeats the last
command entered to run feh. It’s ideal for putting into script files.

The last line is to launch the window manager, and not to wait before the
window manager closes before permitting another command to execute.

e. Save and close.

f. Run these commands:

chmod +x *.sh

ln –s r.sh r

ln –s x.sh x

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 13 of 21

Step 8: Try it all out

The final moment of Truth – does this all work? While we’re at it, get
used to “twm” before you configure it a little.

a. Run the “x” script.

x

BASH seems to be doing nothing at this point. That’s okay.

b. Switch to the XServer XSDL app.

You should see your wallpaper image now, if you didn’t stop to admire it before.

c. If you have a mouse, hold the primary button. Otherwise, hold your finger on
the touch screen.

A menu should appear. The colors are probably ugly, but you can change that.

d. Drag the mouse cursor to the “Aterm” menu item, about halfway down, and let
go.

A terminal window should appear in the top left corner of the screen. It should
not extend past the right or bottom edges of the screen. Best of all, it should be
translucent! The font might be tiny, but you can tweak that.

There should also be a “title bar” with icons to the far left and far right (known in
X as “window decorations”).

e. Try moving the mouse cursor both on and off the aterm window.

You will notice the title bar “greys out” when the window loses focus, and the
cursor changes from a solid box to hollow. Unlike what you might be used to,
the mouse cursor must be hovering over a window in order for it to have focus.

f. Try moving the mouse cursor to the icon on the left and clicking/tapping on it.

The window should “minimize” (or “iconify” as it’s called here), meaning it
disappeared and there is a small box with the label “aterm” in it.

g. Try restoring the window by moving the mouse cursor to the “icon” and: if you
have a mouse, clicking the secondary button; or else pressing the touch screen
(try using two fingers if it doesn’t work the first time).

h. Try moving the mouse cursor to the icon on the right and holding it with your
finger or the primary mouse button.

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 14 of 21

The window should now be in “resize” mode. You should notice another icon in
the top left corner, showing you the window’s geometry as you drag to resize it.
Let go when you’re finished, of course.

You might be asking where the “close” button is. There isn’t one – for now.

i. Try moving the mouse cursor to the title bar and holding it with your finger or
the primary mouse button.

The window should now be in “move” mode. While you are dragging the
window, you will notice the portion of the wallpaper seem to move with the
window, and snap back once you let go.

Time to confess: the aterm window is not really translucent. It is fetching the
part of the wallpaper that it overlaps and drawing it (with the colors slightly
offset) as its own background image. This will be obvious later, when you raise it
on top of another window, and you don’t see the other window beneath it
where they overlap. Bear in mind, this was quite a few years before the “Aero”
effects you have probably seen in Windows 7 or even Windows Vista.

j. Now, focus the aterm window and run the “Run” script from here.

r

If the command is not recognized, you might not be in the Home Folder. Just
enter “cd” and try again.

The jzintv launch menu we just created should appear within the window. Let’s
select one of the Debug options (5-8).

The jzintv window should appear, but nothing happens right away. It might be
small, but we’ll handle that in a moment.

k. Move the mouse cursor to put the focus onto the aterm window and enter “q”
at the debug prompt.

The jzintv window should close. That was ‘q’ for “quit.”

You should have noticed that, when the aterm window (re)gained focus, it didn’t
automatically raise on top of the jzintv window. That’s also probably different
from what you’re used to. It will be handy though when using the debugger.

l. Run “r” again (without the debugger this time) and try out your game!

jzintv should have sound, and it should respond to your key bindings.

Remember, you can focus the aterm window and press Ctrl+C if the Quit button
binding doesn’t work for some reason.

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 15 of 21

Step 9: Additional steps

Adding X capabilities to your existing text editor or installing a new one

This depends on your text editor.

For emacs, you can run the command “pkg install emacs-x” which will require an
additional 60M of storage space. If XServer XSDL isn’t running, emacs will open in text
mode as before. You can also force text mode by using the -nw switch.

Trying “man”

You might have been advised at some point to “read the man page for more
information” or something like that. There are man pages for aterm and twm
in particular, which will be useful when you start changing their configurations.

To read a man page, type “man” followed by the software package. For example, to
read the man page for man itself, type “man man”. Try it for feh as well: “man feh”.

Use the spacebar to read the next page, or Enter for one line at a time. Press ‘q’ to quit.

Tweaking aterm and twm

First, aterm

a. Read the man page for aterm (“man aterm”) and decide on a change you would
like to make, say the font size or window geometry.

b. Open the file “~/.twmrc” using your (now-graphical) text editor.

c. Try making a change to that line near the end beginning with “Aterm”

d. Save and close.

e. Type “exit” within the aterm window to close it.

f. It should just be you and the wallpaper now. Hold the primary mouse button or
your finger on the screen to open the menu, and select “Restart” near the
bottom.

This will apply the change you made to the twm startup script.

g. Open the menu as before and select “Aterm”

The terminal window should look the way you specified. If not, repeat these
steps until you like what you see. You might want to keep the terminal window
160 characters wide though, because some of the jzintv debug tools need that.

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 16 of 21

Now for twm

a. Open the file “~/.twmrc” once again.

In the bottom section, where the menu is defined, you’ll see some lines that
contain a pair of color definitions. The first one is the foreground (text color)
and the second one is the background. Wherever there are lines without color
definitions, twm will color each consecutive line a color between adjacent
definitions to create a gradient effect, if the “InterpolateMenuColors” line near
the top exists and isn’t commented out.

b. Try making some changes here, and then save and close.

c. Restart twm as before. There is no need to close windows. If there are any
windows open, their window decorations will simply disappear and reappear.

d. Open the twm menu and decide whether to make some more changes. Repeat
if necessary.

Here is what my environment currently looks like on my phone:

The phone’s native resolution is 2560x1440, but I turned it down to 1600x900
because everything was too small. The aterm window is the only window open
here, and it is focused here and set to a geometry of 160x55 with font size 9x15.

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 17 of 21

Tweaking the Run script

The jzintv window was probably too small. Let’s change that.

a. Type “jzintv -h | more” and press the spacebar a couple times to see what the
different “-z” values are. Alternatively, you can set a custom resolution. Note
there is no -geometry switch.

Ending a command with “| more” will pause the program after displaying a page
full of text to give you a chance to read it. That way, you don’t have to scroll up.

b. Open “~/r.sh” and modify the -z and -b values in the eight lines that launch
jzintv. (-b is the number of Intellivision pixels to extend the display on each side
to draw the Intellivision border.)

c. Save and close.

d. Type “r” again from the aterm window and choose one of the debug options.
This will open the jzintv window but not start the game.

e. Focus on the aterm window and type “q” to quit jzintv.

f. If necessary, repeat these steps until the jzintv window is the desired size.

Experimenting with the jzintv debugger

You may or may not be familiar with jzintv’s debugger. The additional files
generated by the new Make script do not take up a significant amount of
storage space.

It’s up to you whether to modify the Backup script (“b”) to copy these
additional files to your device storage. They’re not integrated into the ROM
image. We won’t do that now.

Additionally, I’ll show you a couple more features of twm.

a. If necessary, type “m” to remake the final product with the newly-generated
debugger files (source map, symbol dump, and listing)

b. Type “r” within the aterm window and choose one of the debug options.

c. Try using the “Raise” selection from the twm menu and select the aterm window
to move it on top of the jzintv window. (Remember, you will not see the jzintv
window underneath.)

d. Type “?” to get a listing of debug commands.

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 18 of 21

e. For now, type “>160” which tells the debugger that your terminal display is 160
characters wide (jzintv isn’t built to automatically figure that out).

f. Now try using the “Lower” selection from the twm menu and select the aterm
window to move it underneath the jzintv window.

g. Keep the focus on the aterm window, and type “r” to start your game.

h. Now put the focus on the jzintv window, and at some point, press the key that
you bound to the “Break” function.

i. Put the focus back onto the aterm window, and if necessary, type “?” again.

j. Finally, try some of the commands. As a suggestion, try “m 15d” which will give
you a partial memory dump of the 8-bit scratchpad RAM (if you haven’t written
in Assembly Language before IntyBASIC, this is where your 8-bit variables are at).

k. You can type “r” to resume the game or “q” to quit.

Here is another illustration from my environment. I arranged it so aterm is at
the bottom but is focused. My text editor of choice is on top, and jzintv is in the
middle. Currently, the debugger is running. If you look carefully, the bottom line
in the debugger is taking up the full width of the terminal window.

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 19 of 21

Step 10: Future startup and shutdown steps

There are exact steps I follow when I want to stop everything for the day.
They may or may not all be necessary, but it’s good to get into a habit.

Startup

a. Open the XServer XSDL app.

b. Open the Termux app.

c. Type “x”

XServer XSDL has to be already running for the “x” script to work.

Later, when we return to this session, there will be a bunch of warnings about
missing fonts and so on, but who cares? TWM defaulted to something legible.

d. Swipe from the left and start a second Termux session.

e. Switch to XServer XSDL.

f. Select “Aterm”.

Shutdown

a. Type “exit” from aterm (closing jzintv and anything else first, obviously)

b. Select “Exit” from twm

c. Return to the Termux app.

d. Type “exit” as many times as there are active Termux sessions (Termux will close
when the last session is exited).

e. Swipe down from the top (or however else you open Notifications), find the
XServer XSDL notification, and press the Stop button.

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 20 of 21

Musings

There is another way to have a graphical display, called VNC. The Termux Wiki page has
information on that. I have both methods working on my phone, but I could only get
the sound working through XServer XSDL. Plus the setup is a bit more complicated.

Between XServer XSDL and VNC, each has its advantages. XServer XSDL forces the
device into Landscape Mode when active. My tablet’s Home Screen works in Landscape
Mode, so I never have to change its orientation. I also prefer using my tablet to my
phone for the simple reason the screen is larger in size (despite the lower resolution).

You may or may not have noticed when you ran “jzintv -h” that -J is listed as an
alternative to --jlp-savegame. That’s actually not the case. Joe Zbiciak pointed that out
when he was helping me to find out why JLP support wasn’t working in my build of
jzintv. If you’re using my precompiled binary, that’s because I didn’t want to rebuild
jzintv once I finally got it working.

Once again, I provided this document as a contribution to the Intellivision indie
development scene, and there are just a few favors I ask in return.

• First, there is an even smaller, simpler, and prettier window manager I once
used in college. It is called wm2, and it is available here: www.all-day-
breakfast.com/wm2. It compiles into a single executable file that is about
80K in size. If anybody would care to help me get this thing to compile and
run, I would be elated.

• I had a very hard time getting the sound to work, which is one reason that
held up this document for so long. A Google+ Termux Community member,
“xeffyr” was kind enough to figure out and fix the problem (it was the SDL
package within Termux, not jzintv), but by then, I ended up having no idea
how I got pulseaudio working on my phone, and it’s not working on my
tablet. The pulseaudio package was pre-installed onto your device as a
dependency of SDL, and so I made no mention of it here.

• Similarly, pulseaudio only works within XServer XSDL and not VNC on my
phone. It might not be possible to use pulseaudio with VNC, but I would
appreciate if somebody can confirm that, or else help me configure it so it
will work. I tried downloading a separate app called Simple Protocol Player
which will play audio threads on an open port, but that’s as far as I got.

• Finally, I would like to know how to get TWM to recognize the fonts it keeps
complaining about, or other installed fonts. Additionally, I would like to
know where TWM is looking for its icon graphics. There seems to be nothing
within .twmrc that suggests where they are coming from, and I added a line
which created a “close button” (you’ll see it if you look carefully at my
previous screenshots, just to the left of the “resize button” on each window).
The image is a default “?” symbol within a box though, and a warning
appears in the Termux session I launched my “x” script from.

http://www.all-day-breakfast.com/wm2
http://www.all-day-breakfast.com/wm2

Portable Development Environment 2 by Michael Hayes

Midnight Blue International, LLC Page 21 of 21

Acknowledgments

I should have added this section to the original volume. Better late than
never.

• In no particular order, first: to Oscar Toledo G. for developing IntyBASIC and
revolutionizing Intellivision game development, and also for giving me assistance
in getting IntyBASIC to compile in Termux.

• To Joe Zbiciak, for developing jzintv, for creating JLP, and for all the past and
present help with everything from getting RedHat Linux installed onto my
computer 20 years ago to getting jzintv compiled and running in Termux. Not to
mention, finding the Vectron easter egg and having enough confidence in me to
verify it.

• To William Moeller, who gave me enough “inside info” 20 years ago to make my
old website relevant (The Intellivision Library), and who keeps lighting a fire
under my feet to finish FUBAR (that’s my next project – I swear).

• To Christopher Neiman, who arranged to put my first two projects onto an
Intellivision cartridge, and who also gave me an Intellivision Music Keyboard so I
could play Melody Blaster.

• To the developers of Termux for the obvious reason that my “Intellivision
Laboratory” is now mobile thanks to them, and also to “xeffyr” for fixing the SDL
package to get the jzintv sound working.

• To the emacs community for obviating a certain piece of bloatware called MS
Visual Studio, and also to “carlsson” on Atariage for helping me get syntax
highlighting working in IntyBASIC Mode within emacs.

• To Intellivision Entertainment for creating the (upcoming) Amico console, doing
a fantastic job of generating all the excitement about it, and keeping the
Intellivision name alive!

• Finally, to you, for making it worth my while to have written this document.

Here’s to our future development of games that can save our high scores.

	Setting up a Portable Intellivision Development Environment on Your Android Device
	Companion Volume – Running jzintv in a Graphical Environment
	Written by Michael Hayes
	intylab@yahoo.com
	Date of Last Modification: December 6, 2018
	Introduction
	Disclaimer
	You will need:

	Step 1: Install another app onto your device.
	We’re going to launch it too.
	Like Termux, XServer will continue running until you tell it to stop. You can do that through your device’s Notifications.

	Step 2: Fetch some wallpaper.
	Little did you probably know, that blue screen with text is actually your “wallpaper.” What you’re looking at is in fact your graphical display. The only thing you see right now is called the “root window,” which is analogous to your “desktop” in ot...
	So let’s get something to put there besides that blue screen.

	Step 3: Configure the Linux environment.
	I assume you haven’t gotten too far ahead and installed another shell to replace BASH. If you have, you will have to modify the following steps appropriately.
	Unlike with the text editor, where I let you choose any one you want, I will specify a couple things for now that you could otherwise choose on your own. Things would get too complicated if I didn’t do it this way. Once you get settled, you can shop...

	Step 4: Create keyboard mappings for jzintv.
	The jzintv4droid app had touch-screen controls for your emulated Intellivision controllers. Since we’re not using that app anymore, you will need to define key bindings for jzintv.
	Obviously, it’s up to you how to configure it. Here is an image of an ECS keyboard for your easy reference:
	You will notice the following characters missing: ‘!’, ‘@’, ‘&’, ‘_’. Similarly, the ECS keyboard doesn’t have the square/curly bracket keys, the pipe/backslash key, or the back-apostrophe/tilde key. These could be useful for binding the emulator f...
	You can also exit out of jzintv by moving the focus back to the terminal window that you launched it from and pressing Ctrl+C. This is good to know in case you screw up the hackfile or forget to include it when launching jzintv. Normally, you would ...
	Curiously, there is a ‘^’ key above the up arrow. GROM has an up arrow and a left arrow where there should be a caret ‘^’ and underscore ‘_’, and indeed, if you press ‘^’ in ECS BASIC, you will see the up arrow. That’s just trivial though.

	Step 5: Install jzintv
	You might be wondering why this is necessary since we downloaded jzintv before and didn’t have to install it. As it turns out, only as1600 works. There is also a precompiled binary called jzintv_batch which works but doesn’t provide a graphical disp...

	Step 6: Modify your Make Script
	Since JLP support is likely the reason you’re reading this, I’m going to assume you want that in your script. We’re also going to put jzintv’s debugger functions to good use.
	Note: there is another Companion Volume, where I discuss maintaining multiple projects in this new environment. Skip this step if you have done that already.

	Step 7: Create a couple more scripts
	Step 8: Try it all out
	The final moment of Truth – does this all work? While we’re at it, get used to “twm” before you configure it a little.

	Step 9: Additional steps
	Adding X capabilities to your existing text editor or installing a new one
	This depends on your text editor.

	Trying “man”
	You might have been advised at some point to “read the man page for more information” or something like that. There are man pages for aterm and twm in particular, which will be useful when you start changing their configurations.

	Tweaking aterm and twm
	First, aterm
	Now for twm

	Tweaking the Run script
	The jzintv window was probably too small. Let’s change that.

	Experimenting with the jzintv debugger
	You may or may not be familiar with jzintv’s debugger. The additional files generated by the new Make script do not take up a significant amount of storage space.
	It’s up to you whether to modify the Backup script (“b”) to copy these additional files to your device storage. They’re not integrated into the ROM image. We won’t do that now.
	Additionally, I’ll show you a couple more features of twm.

	Step 10: Future startup and shutdown steps
	There are exact steps I follow when I want to stop everything for the day. They may or may not all be necessary, but it’s good to get into a habit.
	Startup
	Shutdown

	Musings
	Acknowledgments
	I should have added this section to the original volume. Better late than never.
	Here’s to our future development of games that can save our high scores.

