
Tutorial Walkthrough- How To Correct Rastaconverter Line 

Artefacts 

Background  Rastaconverter is an image rendering application that runs on a 
PC but is targeted at the Atari 8-bit computer line.  It takes an input .png image 

and outputs an executable file (with a .xex extension) that displays an 
approximation of the original input image when executed on an 8-bit Atari. The 
algorithm that renders the image for display on an Atari makes use of an ANTIC 

graphics Mode E display list of 240 scanlines to produce a basic screen resolution 
of 160x240 pixels in 4 colours selected from a palette of 120 (PAL systems) or 

128 (NTSC systems). Each pixel has an aspect ratio of 2:1, meaning the image 
has an overall aspect ratio of 4:3. 
 

Various advanced techniques are applied in the algorithm to increase the 
number of colours displayed in the image. Overlaying player (sprite) graphics 

increases the basic number of colours displayable on a scanline (horizontal row 
of pixels) to 8, although at a basic level each of the 4 player colours can only 

appear on the image within a vertical band 32 pixels wide. However, 
Rastaconverter also uses a CPU kernel synchronised to the (actual or emulated) 
TV display to update any of the 8 available colours ‘on-the-fly’ to any other 

colour from the available palette, so that, subject to timing constraints (i.e. how 
fast the CPU can update colour registers), more than 8 colours can appear on 

any given scanline and the full available palette of 120 or 128 colours can be 
displayed within the full image. 
 

Furthermore, the 32-pixel-wide vertical bands within which each of the 4 player 
colours may appear can also be shifted back & forth ‘on-the-fly’ so that they are 

not in fact constrained to the same horizontal position throughout the vertical 
height of the image. The first player’s 32-pixel-wide band of colour overlay may 
therefore, for example, appear at the left margin of the image on some scan 

lines but on the right or centrally in others.  Within timing constraints, players 
can even be ‘reused’ within a scanline such that, for example, the first player’s 

colour overlay can appear showing one colour at the left margin and the same or 
a different colour at the right margin of the image all within the same horizontal 
line of pixels. 

 
To achieve these tricks the CPU must update the register defining the  horizontal 

position of a player ‘on-the-fly’, and this gives rise to one of the few annoyances 
of Rastaconverter.  Due to timing delays in the Atari video circuitry, the electron 
beam ‘drawing’  the image on the TV screen has moved on 5 pixels (or, in video 

hardware terms, colour clocks) horizontally to the right before updates to the 
player horizontal position register are ready to trigger the display of a player.  If 

the intended updated horizontal position (left margin) of the player falls within 
those 5 pixels, display of the player at the updated position will not be triggered 
on that scanline.  The Rastaconverter algorithm is not ‘aware’ of this delay, with 

the result that not infrequently the kernel it generates inadvertently attempts to 
reposition players within the critical 5-pixel window, leading to a ‘misfire’ of a 

player’s colour overlay on that particular scanline. 
 
The outcome of this ‘misfire’ in the image displayed by the Atari executable is a 

short (often broken) horizontal line of an obviously wrong colour -one that 
doesn't appear in the corresponding .png image that Rastaconverter outputs to 

show how the algorithm believes the Atari image should appear.  The 
background colour pixels the algorithm intended to be 'overlaid’ by said player 



colour on the relevant scanline are displayed instead- the 'incorrect' colour seen 
in the artefact represents these background pixels 'showing through'. 

  
The solution is usually to reprogram the kernel to avoid the player reposition 

occurring (i.e. a CPU write to the relevant player horizontal position register 
HPOSPx completing) within the critical 5 colour clock window before the player is 
due to be displayed.  This can be very easy or very tricky depending on what 

other critically-timed instructions fall in the vicinity. In the particular case of an 
attempted ‘reuse’ of a player within a scanline, the window of opportunity for 

completion of the write to HPOSPx lies between the triggering of the player at its 
previous position and the 5 colour-clock window during which potential re-
triggering is suspended. Note that is possible to retrigger a player while it is still 

in the process of being displayed at its previous position, such that the 
repositioned & ‘old’ players overlap, or more accurately, display of the ‘old’ 

player is prematurely cut short in oder to start displaying the repositioned one. 
 
Occasionally the only simple way out is to edit the bitmap and/or the player 

missile data to cover up the offending pixels with either a playfield colour or 
another player colour.  Obviously, how good a solution that turns out to be 

depends on how critical it is to the image that the pixels in the artefact are the 
colour Rastaconverter originally intended.  Sometimes an alternate player used 

to ‘cover up’ the artefact can be switched if required to be the ‘correct’ intended 
colour then back again, or the background colour itself can be switched to and 
from the ‘correct’ colour during the relevant horizontal segment of the scanline. 

 
Example walkthrough  There follows a walked-through example of a manual 

‘repair’ to a faulty Rastaconverter kernel responsible for an obvious ‘line artefact’. 
 

 
 

This image in fact has two very obvious artefacts (the two light blue horizontal 

lines in the clouds)- we are going to repair the lower of the two. 

The first task is to use Windows Explorer to navigate to and open the ‘Generator’ 

folder within the Rastaconverter main folder.  This is where Rastaconverter 



places the bitmaps and 6502 assembly language programs used to generate the 

Atari executable .xex file. 

 

 

The folder called ‘Generator’ is where the files used to generate the most 

recently-produced .xex file are located.  Here I’ve made several working copies 

of that folder to use in editing the files, retaining the originals so that we can 

always revert back and start again if we get in an inextricable tangle with the 

edits.  Here we’re going to be working from the folder called ‘Generator - Test' 



 

There is a detailed reference list and descriptions of the files you will find in the 

‘Generator’ folder, in alphabetical order, at the end of this document in Appendix 

A. 

For our immediate purposes, we need to only consider the following: 

build.bat  (=the Windows script that generates ‘output.xex’) 

output.png.rp        (=the main kernel assembly language program) 

output.xex  (=the Atari executable last generated by Rastaconverter) 

To begin, open output.xex in Altirra.  This should display the ‘faulty’ image with 

artefacts present. Press the [F8] key to stop the emulator. Press the [Alt] key 

then click on the image- a crosshair cursor and ‘tooltip’ text box should appear, 

giving information about the pixel under the cursor: 



 

 

Move the crosshair to lie over the pixel at the extreme left edge of the artefact 

and make a note of the (horizontal) position and (vertical) scanline, in this case 

138 and 71 respectively. It helps for aligning the crosshairs accurately to have 

scanline emulation switched on in Altirra: ([System] > [Configure System] > 

[Video] then tick the scanlines box.  The intensity of the emulated scanlines can 

be adjusted with a slider under [View] > [Adjust Screen Effects]): 

 

 

 



The implication of these numbers is that the player repositioning causing the 

problem takes place on scanline 71 and within a short period of time before the 

video hardware displays the pixel at horizontal position 138.  Although the 

artefact first becomes visible at position 138, it may be that the intended left 

edge of the repositioned player is a short distance to the left of this, with the 

interval consisting of blank player pixels, or player pixels overlaid by non-

background playfield pixels.  We cannot therefore say for sure that the left 

border of the repositioned player falls exactly within 5 colour clocks (pixels) to 

the left of position 138.  Note that the horizontal position count is a different 

thing to the horizontal pixel count.  In ANTIC graphics Mode E both are counted 

in units of 1 colour clock, but in an unscrolled standard width Mode E, as we 

have here, the first (leftmost) pixel 0 on a line is displayed at horizontal position 

48 ($30), the centre pixels 79 & 80 at horizontal positions 127 & 128 ($7F & 

$80) and the last (rightmost) pixel 159 at horizontal position 207 ($CF). It’s 

necessary to add or subtract 48 ($30) to convert between them.  The colour 

clocks for horizontal position are counted from a point well beyond the left 

border of a normal TV display, long before any on-screen pixels are displayed for 

that scanline.  Similarly, the first full scanline to be displayed is scanline 8. The 

first 8 scanlines, 0-7, are ‘above’ the top of a standard TV display.  The first line 

to be displayed from an ANTIC display list is therefore appears on the 9th 

scanline- scanline 8.  It is therefore necessary to subtract 8 from the scanline 

indicated by Altirra to find the display line, i.e. the zero-indexed scanline count 

from the top of ANTIC’s display area.  This is important because we want to edit 

the kernel assembly language program and, inconveniently, this is labelled in 

terms of display lines, not scanlines. In this instance, the scanline of interest is 

71, and 71-8 is 63, so we can say that the instructions repositioning a player to 

produce this artefact occur in the segment labelled ‘line63’ in ‘output.png.rp’. 

There will be many instructions, together representing exactly 57 machine cycles 

of the 6502 processor, in ‘line63’.  There may be several that reposition players.  

To be sure of the one causing the problem, we need to know quite accurately 

where in this sequence of instructions the problem instruction must lie.  We 

know that it must occur in a fairly limited time window before the pixel at 

horizontal position 138 is displayed.  We also know that it attempts to position 

the left edge of a player to appear within a 5 colour-clock window after the 

6502’s write to the player horizontal position register (HPOSPx) is completed, 

causing a ‘misfire’ or failure to trigger for that player.  Also, looking at how the 

Rastaconverter image is composed from playfield and player colours can often 

give a clear idea of which of the 4 players is involved. 

To do this check, press the [F8] key to restart the emulator, them press Ctrl-

[F8] to bring up a colour-map of how the image is composed, then press [F8] 

again to stop the emulator. You can now use Alt-Click again to bring up the 

crosshair cursor and position it on the same pixel (138,71) we noted previously: 



 

 

In this image, pixels controlled by playfield colours are represented by shades of 

grey. Background colour (the COLBAK register) is shown as black, playfield 

colour 1 (COLOR0) as dark grey, playfield colour 2 (COLOR1) as medium grey, 

and playfield colour 3 (COLOR2) as light grey. Playfield colour 4 (COLOR3) is not 

used in ANTIC Mode E, but is used by Rastaconverter for the missile colour and 

appears as white.  The missiles are always positioned down right and left 

borders of the image to mask changes in background colour made by the kernel 

as the screen is displayed from top to bottom, which would otherwise show as 

offputting horizontal bands of colour in the borders.  The missiles also mask any 

player colours straying outside the image’s horizontal borders. These could 

otherwise arise from players whose horizontal borders are positioned beyond the 

edges of the image.  Pixels controlled by the colour of Player 0 (COLPM0), which 

will be overlain above ‘background’ pixels in the underlying bitmap, appear 

orange. Those of Player 1 (COLPM1) are pink, those of Player 2 (COLPM2) are 

mauve and those of Player 3 (COLPM3) are light blue.  In summary: 

COLBAK black 

COLOR0 dark grey 

COLOR1 medium grey 

COLOR2 light grey 

COLOR3 white  (missiles) 

 

COLPM0 orange 

COLPM1 pink 

COLPM2 mauve 

COLPM3 light blue 

The colour-codes for the player colour registers can be recalled by the mnemonic 

Orange Pigs Move Lightbulbs 

Examining this image, you can see how the kernel is shifting the horizontal 

positions of the players left and right as the image is composed from top to 



bottom to make up the final image.  Player 3 (light blue) for example starts top 

right and ends up bottom left. 

Examining the area to the right of position 137, you can also see the interrupted 

line of background-coloured pixels (here shown as black) which should be 

overlain by a player colour but are ‘showing through’ to produce the artefact: 

 

 

 

We know that a player has failed to trigger on scanline 71, at or just to the left 

of position 138. There are actually a couple of players that appear to be being 

used in this area- Player 0 (orange) and Player 1 (pink). At this initial stage, of 

inspection, either could be involved. However, unless the failed repositioning is 

an attempted ‘reuse’ of a player already displayed in the left half of scanline 71, 

the player in question should not appear on scanline 71 at all. Inspecting 

scanline 71 closely, using the cursor to help with alignment, we can see, 

interestingly, that in this unusual instance both Player 0 and Player 1 are used 

earlier on scanline 71, so this does seem likely to be one of the rare instances 

where the artefact is due to a failed attempt at player reuse within a scanline. 

However, without directly inspecting the kernel assembly program, we remain 

unsure at this stage which player is involved except that it’s almost certainly 

Player 0 or Player 1. 

So now we open up output.png.rp in a text editor and find the sequence of 6502 

assembly instructions following the label ‘line63’: 



  

From a quick inspection of this there are two ‘sta HPOSPx’ instructions, one for 

player 2 and one for player 0. Now we’re already fairly certain that Player 0 is 

the culprit.  However, if we want to make absolutely sure before doing any 

editing of the kernel, we can indulge in a little cycle-counting. 

The 6502 instructions used in the kernel by Rastaconverter represent 2,3 or 4 

machine cycles of the 6502 processor.  The only one taking 3 cycles is the ‘cmp 

byt2’ found at the end of each 57-cycle line segment (byt2 is defined as a zero-

page address, so ‘cmp’ takes 3 cycles instead of 4 to execute). Rastaconverter 

only uses the ‘cmp byt2’ instruction at the end of each scanline to bring the cycle 

count up to the odd (i.e. not even) number of 57.  All the other instructions take 

either 2 cycles (nop; lda #$xx; ldx #$xx; ldy #$xx;) or 4 cycles (sta, stx or sty 

some-graphics-register) Note that although Rastaconverter never does so, 

there’s nothing to stop you from moving the ‘cmp byt2’ instruction to earlier in a 

scanline or inserting 2, 4 or 6 etc. ‘cmp byt2’ instructions in order to get higher 

temporal resolution (instructions completing on odd as well as even cycle count 

boundaries within the scanline) as long as they replace instructions totalling an 

equal number of cycles, such that the total cycle count per scanline is kept 

strictly to 57. 

Anyway, if we start by labelling up the cycle counts on which the HPOSPx 

instructions finish: 



 

 

Now, from inspecting the code we can see that the accumulator is loaded with 

$86 (or 134) (lda #$86 in line 3) before this value is eventually stored in 

HPOSP0 in line 11 (sta HPOSP0).  It’s looking increasingly certain that this ‘sta 

HPOSP0’ instruction is the culprit, since 134 ($86) is quite close to the left of 

horizontal position 138 ($88) where the artefact appears. But to absolutely 

clinch it without experimentation, we need to prove that this write to HPOSP0 

completes within that critical 5 colour-clock window before position 134 ($86), 

causing a ‘misfire’ or failure to trigger. 

Fortunately there is a fixed correspondence between the machine cycle count in 

the kernel and the colour clock count within a scanline.  On a basic level, one 

machine cycle takes exactly 2 colour clocks, but the situation is complicated by 

the CPU being repeatedly ‘frozen’ for a cycle at irregular albeit entirely 

predictable points in the scanline while ANTIC accesses memory for its own 

purposes.  This direct memory access (DMA) by ANTIC is sometimes called ‘cycle 

stealing’ and explains why the CPU on an Atari appears to run up to 36% faster 

when the screen display is turned off by blocking ANTIC’s DMA.  Further cycles 

(9 in the case of ANTIC graphics Mode E) are lost each scanline as ANTIC freezes 

the CPU to perform memory refresh of the Atari’s dynamic RAM.  The upshot of 

all this complexity is that it’s best to work from a pre-prepared table correlating 

kernel machine cycles to screen horizontal positions rather than calculate it from 

scratch: 

  



 

Kernel machine cycle 
count 

Screen horizontal 
position (colour clocks) 

Screen horizontal 
position (hex) 

Display pixel count 
(0-159) 

1 219 $DB - 

2 221 $DD - 

3 223 $E1 - 

4 225 $E3 - 

5 15 $0F - 

6 17 $11 - 

7 19 $13 - 

8 21 $15 - 

9 23 $17 - 

10 25 $19 - 

11 27 $1B - 

12 29 $1D - 

13 31 $1F - 

14 33 $21 - 

15 35 $23 - 

16 37 $25 - 

17 41 $29 - 

18 45 $2D - 

19 53 $35 5 

20 61 $3D 13 

21 69 $45 21 

22 77 $4D 29 

23 85 $55 37 

24 93 $5D 45 

25 101 $65 53 

26 109 $6D 61 

27 117 $75 69 

28 121 $79 73 

29 125 $7D 77 

30 129 $81 81 

31 133 $85 85 

32 137 $89 89 

33 141 $8D 93 

34 145 $91 97 

35 149 $95 101 

36 153 $99 105 

37 157 $9D 109 

38 161 $A1 113 

39 165 $A5 117 

40 169 $A9 121 

41 173 $AD 125 

42 177 $B1 129 

43 181 $B5 133 

44 185 $B9 137 

45 189 $BD 141 

46 193 $C1 145 

47 197 $C5 149 

48 199 $C7 151 

49 201 $C9 153 

50 203 $CB 155 

51 205 $CD 157 

52 207 $CF 159 

53 209 $D1 - 

54 211 $D3 - 

55 213 $D5 - 

56 215 $D7 - 

57 217 $D9 - 

 



Note that this table defines the completion of (1-indexed) kernel machine cycles 

correlated to the simultaneous completion of (zero-indexed) horizontal position 

counts in colour clocks or (zero-indexed) display of pixels, such that for example 

rasta kernel machine cycle 50 completes simultaneously with the end of 

horizontal position (colour clock count) 203 and the display of pixel number 155.  

The next horizontal position and pixel to be displayed would be 204 and 156 

respectively. 

Returning to our kernel program, we can see that our suspect ‘sta HPOSP0’ 

instruction completes at the end of cycle 30. This corresponds to the end of 

colour clock 129 ($81). The critical 5-colour-clock window following that, during 

which triggering of Player 0 is suspended, would be colour clocks 130-134 ($82-

$86).  134 ($86)was the intended new horizontal position of Player 0, which falls, 

by just 1 colour clock, within the critical window.  Therefore this attempted 

repositioning with reuse of Player 0 fails, redisplay of Player 0 is not triggered at 

position 134 ($86) on this scanline and the artefact appears. 

As a sanity check, applying the same logic to the ‘stx HPOSP2’ instruction earlier 

in line 63 of the kernel: 

 

 

This completes at the end of cycle 20, which correlates to the end of colour clock 

61 ($3D) and a critical window of colour clocks 62-66 ($3E-$42). The intended 

new position of Player 2 is 69 ($45), which falls outside the critical window, so 

the repositioning succeeds. 

 

Now we can turn our mind to fixing the problem. Inspection of the kernel rapidly 

shows that the ‘ldy #$86’ immediately preceding our ‘sta HPOSP0’ instruction 

can be swapped with it, moving our ‘sta HPOSP0’ back 2 machine cycles to 

complete at the end of colour clock 121 ($79), with a ‘critical window’ of colour- 

clocks 122-126 ($7A-$7E), well before the intended new player position of 134 

($86). 



 

 

Although moving the new position of the player right by one colour clock to 135 

($87) by editing the ‘lda #$86’ instruction in line 3 would also move its left 

border beyond the ‘critical window’ and avoid the ‘misfire’, altering player 

positions like this usually leads to a cascade of knock-on errors in the image that 

must then be corrected and is therefore best avoided if at all possible. 

We can now save our new kernel program and test it by double-clicking on 

‘build.bat’ to generate a new ‘output.xex’ file.  If all goes well, ‘output.png’ will 

be displayed and the new ‘output.xex’ will be launched in your emulator, and the 

artefact will have vanished: 

 

As a sanity check, inspecting the corrected image with Altirra’s colour-mapping 

function shows the previously artefactual background-coloured pixels (black) 

now overlain by Player 0 (orange): 



 

 

 

Troubleshooting 

If something has gone wrong, an error message will appear saying ‘unable to 

locate output.xex’ or words to that effect. This means the assembler has been 

unable to successfully interpret your edited kernel program.  This is usually for 

one of four simple reasons: putting in a comment without a leading semi-colon; 

misspelling one of the colour registers or HPOSPx registers; forgetting to put a 

$ in a ‘lda/ldx/ldy #$xx’ instruction; misspelling an assembly instruction.  

Examining the ‘!log.txt’ text file should point you in the right direction. 

If output.xex is successfully produced but the colours below the original artefact 

appear ‘scrambled’ you have introduced a timing error by having a line in your 

kernel that does not total 57 machine cycles: 



 

You’ll need to go back and carefully cycle-count the corresponding line in the 

kernel from where the scrambling starts. 

 

Further reading: 

For more information on the operation of the Atari 8-bit computers’ video 

hardware, including ANTIC, GTIA, graphics modes, display lists, colour clocks 

and cycle counting see: 

The Atari Home Computer System Technical Reference Notes © Atari Inc. 1982 

The Altirra Hardware Manual © Avery Lee 2019 

De Re Atari – A Guide To Effective Programming © Atari Inc. 1982  



Appendix A- Files in the Generator Folder 

!log.txt  a log file produced by the assembler of any errors occurring during 

generation of the .xex file 

build.bat  the Windows script that, when run, evokes the assembler ‘mads.exe’ 

to build the Atari executable file output.xex file using the program and data files 

in this folder. The script then opens ‘output.png’ in the default .png viewer and 

opens ‘output.xex’ in the default Atari 8-bit emulator associated with the .xex 

extension 

mads.exe  the cross-assember that when evoked by build.bat with relevant 

parameters reads the assembly language and data files in this folder and outputs 

to this folder an Atari executable .xex file called ‘output.xex’ 

no_name.asq  the assembly language file for the main screen kernel 

no_name.h  the header file for ‘no-name.asq’ containing named register 

equates for the Atari, such as HPOSPx for the player horizontal position registers, 

COLORx and COLBAK for playfield colour registers, COLPMx for the player colour 

registers 

output.png  the (typically) 160x240 resolution image in (typically) 320x240 

pixel .png format that Rastaconverter expects to be displayed in (typically) 

160x240 pixels by running the generated output.xex executable file on an Atari 

8-bit computer 

output.png.csv a comma-separated-value database of information relating to 

the elapsed time and scoring of solutions being considered by Rastaconverter 

when last stopped- for internal use by the Rastaconverter algorithm in its 

evaluations 

output.png.lahc  text file with the first 2 lines containing (1) the number of 

simultaneous solutions specified for consideration by Rastaconverter when last 

running and (2) the total number of solutions run through when Rastaconverter 

was last stopped.  The remaining rows contain internal data for use by the 

Rastaconverter algorithm in its evaluations 

output.png.mic  data file containing the bitmap generated by Rastaconverter 

representing the (typically) 160x240 playfield pixels in the final .xex file 

generated by build.bat. This bitmap data can if needed be loaded, edited and 

resaved by a suitable graphics application, such as Grph2fnt 

output.png.opt   text file containing a version of the assembly language 

program used to compile the machine-code main kernel program.  A functionally 

equivalent program is to be found in ‘output.png.rp’ but here it is optimised for 

easy reading by removing from the raw Rastaconverter output all redundant CPU 

instructions that don’t ultimately affect a graphics register, e.g. an LDX #$00 

that is superseded by an LDX #$04 without any intervening STX instruction.  

This file is for convenience only- it is not used in the building of the .xex, which 

uses the functionally equivalent but less intelligible ‘output.png.rp’ 

output.png.opt.ini  text file containing a version of the initiation header of the 

assembly language program used to compile the machine-code kernel program.   

A functionally equivalent program is to be found in ‘output.png.rp.ini’ but like 



‘output.png.opt’ it is optimised for easy reading.  This file is for convenience 

only- it is not used in the building of the .xex, which uses the functionally 

equivalent ‘output.png.rp.ini’. In practice, since Rastaconverter never generates 

redundant instructions in the header the two files are identical. 

output.png.pmg  a text file containing the player-missile data for the .xex, 

stored in assemby language format.  Missile data is not actually used (the kernel 

‘locks up’ the GTIA missile graphics register to continually display $FF) so the file 

starts by reserving 256 of unused memory to represent the missile data area.  

There follow 4 x 256 bytes of player data organised in tables of 16x16 

hexadecimal values.  The first and last 8 bytes of data for any player are never 

used by the Atari display hardware, so these are always 00. The eighth byte of 

data is for display on the eighth scanline of the frame, which corresponds to line 

0 of the display list (display lists always start on the 9th scanline- scanline 8- of 

the frame). Therefore, to find which byte in the tables corresponds to a given 

line label in the rasta kernel assembly program (‘output.png.rp’)- which are 

defined by display list lines- it’s necessary to add 8.  e.g. the player data being 

displayed while ‘line54’ of the rasta kernel is running can be found in the 62nd 

values of each of the 4 player data tables. §  If you need to edit player data, you 

can manually do so in this file and resave it. 

§ With hindsight, life would have been simpler if Rastaconverter had labelled the 

kernel assembly program with scanline numbers instead of display line numbers! 

output.png.rp   text file containing the assembly language program used to 

compile the main kernel machine-code program of the .xex file.  After a few 

dummy instructions to synchronise the CPU with the video display hardware, the 

kernel consists of 6502 instructions organised into labelled ‘lines’ of exactly 57 

machine cycles each, this representing the number of cycles the 6502 completes 

during each and every horizontal scanline of the display list defined in 

‘no_name.asq’.*  To determine which part of the kernel is running when a given 

scanline is being displayed, it is necessay to subtract 8 from the scanline number 

and then search ‘output.png.rp’ for the corresponding line label. The line labels 

reference display list lines not scanlines (display lists always start on the 9th 

scanline- scanline 8). e.g. the 57 machine cycles running during scanline 54 are 

defined by assembly instructions following the label ‘line46’ in ‘output.png.rp’ § 

 

* This display list consists of 240 lines of ANTIC mode E, each with an LMS bit 

set that reloads ANTIC’s playfield memory fetch counter, finally ending with a 

JVB. Triggering a JVB beyond the 248th scanline (240th display list line) risks the 

display flickering- with alternate frames being blank- but the kernel avoids this 

by directly reloading the display list instruction counter to point to the start of 

the display list during vertical blank. 

output.png.ini  text file containing the initialisation header of the assembly 

language program used to compile the machine-code kernel program. This 

initialisation code runs each frame at the end of vertical blank to set up the 

colour registers and player horizontal positions ready for the 1st display line, 

then zeros the CPU data registers and waits for the 1st display line (display list 

line 0, which is the 9th scanline- scanline 8) before control passes to the main 

kernel program in ‘output.png.rp’. The initialisation header also contains an 

equate indicating the vertical resolution in pixels of the image to be displayed, 



which is typically 240 but may be fewer.  This information is used when 

assembling the .xex file to organise the storage of bitmap data in memory. 

‘output.png.rp’ will also consist of this number of labelled 57-machine-cycle lines. 

e.g. for a 192 pixel-high image, the last 57-cycle segment of ‘output.png.rp’ will 

be labelled ‘line191’ 

output.png-dst.png  the (typically) (typically) 160x240 resolution image in 

(typically) 320x240 pixel .png format that Rastaconverter is trying to reproduce 

as closely as possible. It represents ‘output.png-src.png’ with any dither and/or 

other image-processing selected in Rastaconverter applied, then matched 

according to the chosen parameters to the selected 120/128-colour Atari palette 

output.png-src.png  the (typically) 160x240 resolution image in (typically) 

320x240 pixel .png format achieved by resizing the selected source image 

according to the parameters chosen in Rastaconverter 

output.xex  the Atari executable file generated when ‘build.bat’ invokes the 

assembler, using the program and data files in this directory. 

  



Appendix B – Named Graphics Registers Used in the Kernel and 

Corresponding Colours in Altirra’s Colour-mapping Function 

 

COLBAK black         playfield background colour (bit pattern 00) 

COLOR0 dark grey  playfield colour 1   (bit pattern 01) 

COLOR1 medium grey playfield colour 2   (bit pattern 10) 

COLOR2 light grey  playfield colour 3   (bit pattern 11) 

COLOR3 white   playfield colour 4   (missiles) 

 

COLPM0 orange  player 0 colour 

COLPM1 pink   player 1 colour 

COLPM2 mauve  player 2 colour 

COLPM3 light blue  player 3 colour 

HPOSP0 -   horizontal position player 0 

HPOSP1 -   horizontal position player 1 

HPOSP2 -   horizontal position player 2 

HPOSP3 -   horizontal position player 3 

  



Appendix C – Correspondence of Kernel Machine Cycles with Horizontal 

Position (colour clock count) and Pixel Count 

 

Kernel machine cycle 
count 

Screen horizontal 
position (colour clocks) 

Screen horizontal 
position (hex) 

Display pixel count 
(0-159) 

1 219 $DB - 

2 221 $DD - 

3 223 $E1 - 

4 225 $E3 - 

5 15 $0F - 

6 17 $11 - 

7 19 $13 - 

8 21 $15 - 

9 23 $17 - 

10 25 $19 - 

11 27 $1B - 

12 29 $1D - 

13 31 $1F - 

14 33 $21 - 

15 35 $23 - 

16 37 $25 - 

17 41 $29 - 

18 45 $2D - 

19 53 $35 5 

20 61 $3D 13 

21 69 $45 21 

22 77 $4D 29 

23 85 $55 37 

24 93 $5D 45 

25 101 $65 53 

26 109 $6D 61 

27 117 $75 69 

28 121 $79 73 

29 125 $7D 77 

30 129 $81 81 

31 133 $85 85 

32 137 $89 89 

33 141 $8D 93 

34 145 $91 97 

35 149 $95 101 

36 153 $99 105 

37 157 $9D 109 

38 161 $A1 113 

39 165 $A5 117 

40 169 $A9 121 

41 173 $AD 125 

42 177 $B1 129 

43 181 $B5 133 

44 185 $B9 137 

45 189 $BD 141 

46 193 $C1 145 

47 197 $C5 149 

48 199 $C7 151 

49 201 $C9 153 

50 203 $CB 155 

51 205 $CD 157 

52 207 $CF 159 

53 209 $D1 - 

54 211 $D3 - 

55 213 $D5 - 

56 215 $D7 - 

57 217 $D9 - 



 


