

[Ronald ^Iteock

Reigafe Manual Writers

CAMBRIDGE UNIVERSITY PRESS

CAMBRIDGE
NEW YORK PORT CHESTER

MELBOURNE SYDNEY

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521468213
© Cambridge University Press 1992

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 1992
Reprinted (with corrections and in a larger format) 1993
Reprinted 1998

Re-issued in this digitally printed version (with corrections) 2008

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-46821-3 paperback

Acknowledgements

l^y warmest thanks to the following people without
whom the job of writing this book would have been
lonely and terrifying: Paul Burden, for patiently
steering my rambling thoughts from nonsense to sense
during many telephone conversations; Mike Ingham,
for the same thing, and making it worth while to
continue instead of throwing it all in the bin; Paul
Shearing, for his enthusiasm and indispensable help
with production; Andrew, my elder son, for help with
just about everything.

PREFACE
r i

^INTRODUCTION

CONCEPTION
REALIZATION

DISSECTION
EXERCISES

CONCEPTS

DECISIONS
I F - ELSE
LOOPS
CHARACTERS
ARRAYS
MATRIX MULTIPLICATION
HOOKE'S LAW
FUNCTIONS

CALL BY VALUE
RATE OF INTEREST

SCOPE OF VARIABLES
RECURSION
EXERCISES

COMPONENTS

NOTATION
CHARACTERS
NAMES
SCALAR TYPES

ON YOUR MACHINE. . .

CONSTANTS

LITERAL CONSTANTS

STRING LITERALS

NAMED CONSTANTS

ENUMERATIONS

EXPRESSIONS
STATEMENTS AND PROGRAM
DECLARATIONS

DECLARATION VS DEFINITION

FUNCTION DEFINITION

PROTOTYPES

OLD-STYLE C

HEADER FILES

OPERATORS
ARITHMETIC OPERATORS

LOGICAL OPERATORS

BITWISE OPERATORS

ASSIGNMENT OPERATORS

INCREMENTING OPERATORS

SEQUENCE OPERATOR

REFERENCE OPERATORS

1

2
4
6

10

11 -

12 ^

12
14
15
16
17
18
20
21
22

23
24

27

28
29

30
31
32

33
33

33

34

34

35

36
37
37

37 s%

38 V£
38
38
39
39
39
40
42
43
43
44

OTHER OPERATORS

SUMMARY

PRECEDENCE & ASSOCIATIVITY
MIXED TYPES

PROMOTION & DEMOTION

CAST

PARAMETERS

LITERAL CONSTANTS

ACTION OF OPERATORS

L (jONTROL

TESTED LOOPS
COUNTED LOOP
ESCAPE

AREA OF A POLYGON
SELECTION STATEMENT - I F
ROMAN NUMBERS

SWITCH
JUMP

CABLES
QUICKSORT

EXERCISES
b s—•>.

) ORGANIZATION

PROCESSING
PREPROCESSOR

SIMPLE MACROS

MACROS WITH ARGUMENTS

NESTED MACROS

STRING ARGUMENTS

HEADER FILES

FUNCTION PROTOTYPES

CONDITIONAL PREPROCESSING

SYNTAX SUMMARY

STORAGE CLASS
OUTSIDE DECLARATIONS

BLOCK DECLARATIONS

PARAMETER DECLARATIONS

NAME SPACE

f JOINTERS, ARRAYS, STRINGS

POINTERS
* OPERATOR

& OPERATOR

DECLARING POINTERS

PARAMETERS
QUICKSORT AGAIN

POINTER ARITHMETIC
PARLOUR TRICK

POINTERS TO FUNCTIONS

45

46

47
48
48

48

48

48

49

51

52

53
53
54
55

56
58
59

60
62
64

65

66
67
68

68

69

69

70
70
71

72

73
74

76

77

78

79

80
80
80
81
82
83
84
86
88

vu

COMPLEX DECLARATIONS
STRINGS

STRING ARRAYS

STRING POINTERS

PRINTING STRINGS

RAGGED ARRAYS

COMMAND LINE
PARAMETER COUNTING
STRING UTILITIES

READ FROM KEYBOARD

WHAT KIND OF CHARACTER?

HOW LONG IS A STRING?

COPYING STRINGS

COMPARING STRINGS

BACKSLANG
EXERCISES

90
92

93

93

94

94

95

96
98
98

100

100
101

102

104

106

4JNPUT, OUTPUT 107

ONE CHARACTER 108
GET 108
PUT 109

UNGET 109

PRINT FORMAT 110
SCAN FORMAT 112
EASIER INPUT 114
STREAMS AND FILES 116

OPENING 116
CLOSING 117
REWINDING 117

REMOVING 117

RENAMING 118

ERRORS 118

CATS 119

TEMPORARY FILES 120
BINARY I/O 121
RANDOM ACCESS 122
DATABASE 123

EXERCISES Yte

STRUCTURES, UNIONS 125

INTRODUCING STRUCTURES 126

USAGE O F STRUCTURES 128
ACCESS OPERATORS 129
STYLE O F DECLARATION 130
BOOKLIST 131
UNIONS 132
BIT FIELDS 133
SYNTAX 134

TYPE OR SHAPE 134

ALIAS 134

DECLARATORS 135

TYPE-NAME 135

DECLARATION 136

STACKS 138

REVERSE POLISH NOTATION 139
POLISH 141
EXERCISES 142

DYNAMIC STORAGE

MEMORY ALLOCATION
STACKS
POLISH AGAIN
SIMPLE CHAINING
SHORTEST ROUTE
INTRODUCING RINGS
ROSES
BINARY TREES
MONKEY PUZZLE
EXERCISES

LIBRARY

INPUT, OUTPUT, FILES
LOW LEVEL I/O

SINGLE CHARACTER I/O

FILE MANAGEMENT

RANDOM ACCESS

STRING I/O

FORMATS FOR I/O

TEMPORARY FILES

BUFFERING

PROCESS CONTROL
TERMINATION

LOCALE

ERROR RECOVERY

SIGNALS, EXCEPTIONS

VARIABLE ARGUMENT LIST
MEMORY ALLOCATION
STRING TO NUMBER
MATHEMATICS

ARITHMETICAL

TRIGONOMETRICAL

HYPERBOLICS

RANDOM NUMBERS

MODULAR DIVISION

LOGARITHMS, EXPONENTIALS

CHARACTERS
STRINGS

STRING LENGTH

COPY & CONCATENATE

STRING COMPARISON

STRING SEARCH

MISCELLANEOUS STRINGS

SORT, SEARCH
DATE AND TIME

SUMMARIES

OPERATOR SUMMARY
SYNTAX SUMMARY
LIBRARY SUMMARY

143

144

146
148
149
150
154

156
158

161
162

163

164

164

164

165

166

167

168

170

170

171
171

173

174

175

176
176
177

179
180

181

182

182

183

184

185

186
187

187

188

189

190

191
192

195

196

197
204

BIBLIOGRAPHY

LNDEX

209

210

VIU

I jhe original C programming language was devised by Dennis Ritchie. The
first book on C, by Kernighan and Ritchie, came out in 1978 and remained
the most authoritative and best book on the subject until their second
edition, describing ANSI standard C, appeared in 1988. In all that time, and
since, the availability and use of C has increased exponentially. It is now
one of the most widely used programming languages, not only for writing
computer systems but also for developing applications.

n are many books on C but not so many on ANSI standard C which
is the version described here.

^fhis book attempts three things:

• to serve as a text book for introductory courses on C aimed
both at those who already know a computer language and at
those entirely new to computing

• to summarize and present the syntax and grammar of C by
diagrams and tables, making this a useful reference book on C

• to illustrate a few essential programming techniques such as
symbol state tables, linked lists, binary trees, doubly linked rings,
manipulation of strings, parsing of algebraic expressions.

I/or a formal appreciation of C a its p>ower, its advantages and dis-
advantages *=* see the references given in the Bibliography. As an informal
appreciation: all those I know who program in C find the language
likeable and enjoy its power. Programming C is like driving a fast and
powerful car. Having learned to handle the car safely you would not
willingly return to the family saloon.

TJfhe hand-written format of this book has evolved over several years,
and over six previous books on computers and programming languages.
The pages contain the kind of diagram an able lecturer draws on the
blackboard and annotates with encircled notes. Written text has been kept
short and succinct. I have tried to avoid adverbs, cliches, jargon and
unnecessarily formal language.

IX hope the result looks friendly.

QE1GATE

Surrey, UK. February 1992

IX

i j fhe introduction starts with the concept of a stored
program. The concept is second nature to anyone who has
programmed anything on any computer in any language,
out to a complete novice it can be difficult to grasp. So
a simple program is written in English and then translated
into C.

TJfhe chapter explains principles of running a C program
on the computer. The explanation is sketchy because each
implementation of C has different rules for doing so.
Check the manuals for your own installation.

l/inally the program is dissected, statement by statement.

THE COHCEPT OF A STORED PROGRAM

l\f you ask to borrow £5,000 at 15.5% compound interest over 5 years,
the friendly bank manager works out your monthly repayment, M, from
the compound interest formula:

P * R ~ (i 4- R)N

M =

'here:
12 ((1 + R) N - 1))

P represents the principal ([£5000 in this case])

R represents the rate of interest (J 0.155 is the
absolute rate in the case of 15.5%])

N represents the number of years (J 5 in this case})

Tjfo work this out the friendly bank manager might use the following
'program' of instructions:

smaller box
for whoLe\
number r

1\ Get math tables or calculator ready

45 Draw boxes to receive
values for P, Rpct, N. Also
a box for the absolute
rate, R, and a box for
the repayment, M

$\ Ask the client to state the three values: Principal (P), Rate
^ percent (Rpct), Number of years (N)

Write these values in their respective boxes

Write in box R the result of Rpct/l00. For Rpct use the value
to be found in box Rpct (J don't rub out the content of box
Rpct])

Write in box M the result of the compound interest formula.
Use for the terms P, R, N the values to be found in boxes
P, R, N respectively (£ don't change anything in boxes P, R, N])

fk Confirm to the client the values in boxes P, Rpct, N and
^ monthly installment read from box M

the

Work out (| 12 x value in box M x value in box N]) to tell
tell the client how much will have to be repaid.

Tjfhis program is good for any size of loan, any rate of interest, any
whole number of years. Simply follow instructions 1 to 8 in sequence.

ILLUSTRATING C

4 \ computer can be made to execute such a program, but first you
must translate it into a language the computer can understand. Here is a
translation into the language called C.

•include <stdio.h>
•include <math.h>

int main (void)
main program starts

f

float P, Rpct, R, M;

int N;

printf ("\nEnter: Principal, Rate%, No. of yrsAn") ;

scanf ("%f %f % i " , &P, &Rpct, &N) ;

R = Rpct

M = P * R * pow (1 + R, N) / (12 * (pow (l+R, N) - 1)) ;

printf ("\ni%l.2f, <s>%ll.2f %% costs i%l.2f over %i years", P, Rpct, M, N);

printf ("\nPayments will total i%1.2f", 12*M*N) ;

0;
main program ends

i j he above is a program. This particular program comprises:

• a set of directives to a preprocessor^ each directive begins #

• a function called main() with one parameter named void.

4 \ function comprises:

• a header conveying the function's name (£ main }) followed by

• a block

4 \ block { enclosed in braces } comprises:

• a set of declarations (? 'drawing' the little boxes])
• a set of statements (£telling the processor what to do])
Ijjach declaration and each statement is terminated with a semicolon.
TJfhe correspondence between the English program opposite, and the C
program above, is indicated by numbers 1 to 8.

TJfhe C program is thoroughly dissected in following pages.

i : INTRODUCTION

MAKING A PROGRAM RUN

TJhe program on the previous page should work on any computer that
understands C.

Unfortunately not all computer installations go about running C programs
the same way; you have to have some understanding of the operating
system^ typical ones being Unix and DOS. You may be lucky and have an
integrated development environment fllDE]) such as that which comes with
Turbo C or Microsoft C. In this case you do not have to learn much
about Unix or DOS. You control Turbo C with mouse and menus; it really
is easy to learn how.

Regardless of environment, the following essential steps must be taken
before you can run the C program on the previous page.

JType. Type the program at the keyboard using the editing facilities
available. If these are inadequate, discover if it is feasible to use
your favourite word processor.

When typing, don't type main as MAIN; corresponding upper
and lower case letters are distinct in the C language (£ except
in a few special cases]).

Be sensible with spacing; don't split adjacent tokens and don't
join adjacent tokens if both are words or letters;

flo at P, Rpct, R, M; floatP, Rpct, R, M;

tokens joined/split token^

Apart from that you may cram tokens together or spread
them out >s* over several lines if you like:

float P,Rpct,R,M;int N;
^ K float P

R
Rpct
m;

To separate tokens, use any combination of whitespace keys:

return
_ ^

space

^ r o r e . Store what you type in a file, giving the file a name such
as WOTCOST.C (£The .C is added automatically in some environments;
it signifies a file containing a C program in character form, the .C
being an extension of the name proper.])

ILLUSTRATING C

^ J p Compile the program <$& which involves translating your C
program into a code the computer can understand and obey directly.

This step may be initiated by selecting Complie from a screen
menu, or typing a command such as cc wotcost.c (J Unix]) and
pressing the Return key. It all depends on your environment.

The compiler reports any errors encountered. A good IDE
displays the statements in which the errors were discovered,
and locates the cursor at the point where the correction
should be made.

• Ijdit. Edit the .C file and recompile as often as necessary to
correct the errors discovered by the compiler. The program may
still have logical errors but at least it should compile.

You have now created a new file containing object code. The
file of object code has a name related to the name of the
original file. In a DOS environment it might have the name
WOTCOST.OBJ ({ compiled from WOTCOST. C J . In a Unix
environment, if you compiled wotcoshc your object code
would be stored in a.out.

Ijink. In many environments a simple C program may be compiled
and linked all in one go (J type a.out, press Return, and away
we go!]) . In other environments you must link the program to
functions in the standard libraries (| pow, printf, scanf are functions
written in C too J) . The resulting file might have the name
WOTCOST.EXE (J linked f rom WOTCOST.OBJ J> .

Wun. Run the executable program by selecting Run from a menu
or enterng the appropriate command from the keyboard.

Ijxecution. The screen
now displays:

Enter three items
separated space, tab
or new line. End by
pressing Return.

The program computes and sends results to the standard
output file (J named std.out |). This 'file' is typically the screen.

Enter Principal, Rate%, No. of yrs.

£5000.00,@15.5% cost;

Payments will total £7546.37

l : INTRODUCTION

OF A C PROGRAM, PIECE BY PIECE

l#lere is the compound interest program again *=* with a title added for
identification.

/* WOTCOST; Computes the cost of a loan */ ^^comment
•include <stdio.h> ^r£- i~^~^^~^"~—~-^—^—^
•include <math.h> ^ S ^ £ ! ^ ' ™ ^ ^ L
int main (void) <^^jieacieTj^^

float P, Rpct, R, M;
int N;
printf ("\nEnter: Principal, Rate%, No. of yrsAn");
scanf ("%f %f % i " , &P, &Rpct, &N) ;
R = Rpct / 100;
M = P * R * p o w (l + R, N) / (l 2 * (p o w (i + R, N) - 1)) ;
printf ("\ni%1.2f, <s>%11.2f%% costs i%l.2f over %i years", P,Rpct,M,N);
printf ("\nPayments will total £%1.2f", 12*M*N) ;
return 0;

>/* WOTCOST; loan * / 44 ny text between /* and */ is treated as
commentary. Such commentary is allowed

wherever whitespace is allowed, and is similarly ignored by the processor.

f#inciud^<stdioir>l ' l? he • (J which must be the first non-blank
[•include <math.h>(character on the line]) introduces an instruction to
*-— •- - 1 the preprocessor which deals with organizational
matters such as including standard files. The standard libraries of C
contain many useful functions; to make such a function available to your
program, tell the preprocessor the name of its header File. In this case
the header files are stdio.h (^standard input and output]) and math.h
((mathematical^. The header files tell the linker where to find the functions
invoked in your program.

int main (void) ^ C program comprises a set of functions. Precisely
one must be named main so the processor knows

where to begin. The int and void are explained later; just accept them
for now. The declarations and statements of the functions follow
immediately; they are enclosed in braces, constituting a block. There is no
semicolon between header and block.

int N;
jf 'little boxes' depicted earlier are called variables.
ariables that hold decimal numbers like 15.5 are of a

different type from variables that hold only whole
numbers. These two statements declare that the variables named P, Rpct,
R, M are of type float (J short for floating point number]) and the
variable named N is of type int (£ short for integer]) . Other types are
introduced later.

such as those above, must all precede the first statement.

ILLUSTRATING C

Ijjach declaration and each statement is terminated by a semicolon. A
directive is neither a declaration nor a statement; it has no semicolon
after it.

4f ou have freedom of layout. Statements may be typed several to a
line, one per line, one to several lines. To the C compiler a space, new
line, Tab, comment, or any number or combination of such things between
statements *£* or between the tokens that make up a statement & are
simply whitespace. One whitespace is as good as another, but not when
between quotation marks as we see here.

significant spaces, reproduced on output page

^ ^h i s is an
- — - . 1— • invocation

of printf(), a much-used library function for printing. In some environments
the processor includes standard input and output automatically ^without
your having to write #include <stdio.h>

Print f C " v ") ;
characters to be sent to

r the standard output stream \
\- honouring spaces;

'the f\
stands for
formatted ')

\^/hen printing, the processor watches for back-slash. On meeting a
back-slash the processor looks at the next character for guidance: n says
start a new line. \n is called an escape sequence. There is also \t for
Tab, \ f for form feed, \ a for ring the bell (or beep) and others.

t's no good pressing the Return key instead of typing \n. Pressing
Return would start a new line on the screen, messing up the syntax and
layout of your program. You don't want a new line in the program^ you
want your program to generate one when it obeys printf()«l)

scanf ("%f %f % i f \ & P, & Rpct, & N yfhis is an invocation of
the scanf () function for

input. For brevity, most examples in this book use scanf(). Safer methods
or input are discussed later.

scanf C

the Reids
' expected frorn^
the keyboard t

TJhere is more about scanf() overleaf.

comma List'of addresses
variables to which values

l : INTRODUCTION

DISSECTIOH OF WOTCOST COHTINUED

Tjfo obey the scanf() instruction the processor waits until you have typed
something at the keyboard and pressed the return key (£ 'something'
means three values in this example]) . The processor then tries to copy
values, separated by whitespace, from the keyboard buffer. I f you type
fewer than three values the processor stays with the instruction until you
have pressed Return after entering the third. I f you type more, the
processor reads and ignores the excess.

TJfhe processor now tries to interpret the first item as a floating point
number (J % f]) . I f the attempt succeeds, the processor sends the value to
the address of variable P (£ & P}) « » in other words stores the value
in P. The second value from the keyboard is similarly stored in Rpct.
Then the processor tries to interpret the third item from the keyboard as
a whole number (£ %i}) and stores this in variable N.

\^/hat happens if you type something wrong? Like:

where the 15000 is acceptable as 15000.00, but the second item involves
an illegal sign, the third is not a whole number.

TJf he answer is that things go horribly wrong. In a practical program you
would not use scanf().

V/hy the V in &P, &Rpct, &N ? Just accept it for now. The art of C, as
you will discover, lies in the effective use of:

& 'the address of... ' or 'pointer to... '

* 'the value pointed to by...' or 'pointee of... '

R=Rpct/l00; I T/hese statements specify the
M=P*R*pow(l+R,N)/(l2*pow(l+R,N)-l)); necessary arithmetic: Rpct/100

means divide the value found
in Rpct by 100. The / , * , + , - mean respectively: divide by, multiply by,
add to, subtract from. They are called operators, of which there are
many others in C.

pow(l+R,N) is a Function which returns the value of (l+R) raised to the
power N. I f you prefer to use logs you could write exp (log (1 + R) *N)
instead. The math library ({ #include <rnath.h>]) would be needed in
either case; exp(), log(X pow() are all math.h functions.

The terms l + R and N are arguments $ actual arguments)) for the function
pow(), one for each of that function's parameters (J dummy parameters D. In
some books on computing the terms argument and parameter are used
interchangeably.

8 ILLUSTRATING C

^ j%.2f over %i years", PJfoc W l) ;

lfhis is like the earlier printf () invocation; a siring between quotes in
which \n signifies Start a new Line on the output screen.

printf C "

^characters to be printed,
> interspersed with Format
speciFications For values to\

\be printed

t comma List oF names oF
variabLes whose values are)

rto be printed in the
Format speciFied

y u t this time the string contains four Format specifications: %8.2f, %.2f,
%.2f, %i for which the values stored in variables P, Rpct, M, N are to be
substituted in order. You can see this better by rearranging over two
lines using whitespace:

%.2f)%% costs i(%.2fJover(%i.iyears"
Rpc?) .CM/ IN;f

%8.2f as an example. The % denotes a format specification, f
denotes a field suitable for a value of type float >» in other words a
number with a fractional part after a decimal point. The 8 specifies eight
character positions for the complete number. The .2 specifies a decimal
point followed by two decimal places:

l%s.2f:
1 2 3 4 5 6 7 8

44 single percentage sign introduces a format specification as illustrated.
So how do you tell the processor to print an ordinary percentage sign?
The answer is to write %% as demonstrated in the printfO statement
above.

i fhe second (J and subsequent]) format specification is %.2f. How can the
field be zero characters wide if it has a decimal point and two places
after? This is a dodge; whenever a number is too wide, the processor
widens the field rightwards until the number just fits.

printf ("NnPayrnents will total £%.2?\ N * 12 * M >, is
another printf()

invocation with an 'elastic' field. This time the value to be printed is given
by an expression^ n*l2*M, rather than the name of a variable. The
processor evaluates the expression, converts the resulting value (Jif
necessary]) to a value of type float, and prints that value in the
specified field.

: comma List may contain ^
»» \ ^ expressions as well as

names oF variabLesprintf ("

return < |̂ust accept it for now: the opening int main (void)
and closing return 0 are described later.

i : INTRODUCTION

ijrnplement the loans program. This is an exercise in using the tools
of your particular C environment. It can take a surprisingly long
time to master a new editor and get to grips with the commands
of an unfamiliar interface. I f all else fails, try reading the manual.

ILLUSTRATING C

\Jne of the few troubles with C is that you can't
formally define concept A without assuming something
about concept B, and you can't define B without assuming
something about A. Books on C have a bit in common
with the novel Catch 22.

TJfhe aim of this chapter is to introduce, informally,
enough simple concepts and vocabulary to make
subsequent chapters comprehensible.

TJhis chapter introduces decisions, loops, characters,
arrays, functions, scope of variables, and recursion.
Complete programs are included to illustrate the aspects
introduced

LOGICAL VALUES IN C
THERE ARE NO BOOLEAN VARIABLES

i j f , in your program, Profit is greater than Loss (} Profit and Loss being
names of variables holding values]) you may want the program to do
one thing, otherwise another. The expression Profit > Loss is true if the
value in Profit is greater than that in Loss; true is represented by L
Conversely, if the value in Profit is not greater than that in Loss the
expression is False and takes the value 0.

'ij'hus 9.5 > 0.0 takes the value 1 (j true j);
9.5 < 0.0 takes the value 0 (jf False ^>. A few
other logical operators are shown here: ££>
Operators are defined in Chapter 3 and briefly
summarized on page 196.

TXhere are no Boolean variables in C <& you have to make do with
integers; a value of zero represents False; any non-zero vaLue represents
true.

Statements concerned with the flow of control (J if, while, do for j) are
based on values of logical expressions: non-zero for true% -zero Tor False.

A SELECTION STATEMENT

Tjphe if statement may be used to select a course of action according
to the logical value (true or false) of a parenthesized expression:

if (expression) statement else statement

_ reducing to a value of
'non-zero (true) or zero (false)

if (Profit > Loss)
printf ("Hooray!") ;

if (

else

Profit :
printf

printf

>

c
c

Loss)
"Hooray!") ;

"Bother!") ;

true
I

false

Hooray! I Bother!

i

Tjhe statement is typically a compound statement or block. Anywhere a
statement is allowed a block is also allowed A block comprises an
indefinitely long sequence, in braces, of declarations (j optional J) followed
by statements. Some of the statements may be if statements /& a nested
pattern.

12 ILLUSTRATING C

lye careful when nesting 'if' statements. Try to employ ̂ the pattern
resulting from 'else i f rather than 'if i f which leaves 'elses dangling in
the brain. A sequence of 'if i f makes it difficult to match the associated
'elses' that pile up at the end.

i jn the illustration below, the operator ! means not. Thus if variable Lame
holds the value 0 \ false j) then the expression JLarne takes the value
1 (J true)). Conversely, if Lame holds a non-zero value (J true)) then
the expression !Lame takes the value 0 (Jfalse^).

if (Lame)
Walk (0

else
if (SoSo

Trot (
else

if

); (OK

) ^
0) ;

(Quiet) ;
Canter (
else

Gallop

)fr

0

c
) ;
0) ;

if (!Lame)
if (!SoSo)

. ^ - ^ ^ i f (.'Quiet)
confusing) Gallop (0);

j - ^ - ^ - / else
Canter (0);

else
Trot (0);

else
Walk (0);

Ijjach 'else' refers to the closest preceding ' i f that does not already have
an 'else', paying due resped to parentheses. Careful indentation shows which
'else' belongs to which 'if, but remember that the processor pays no attention
to indentation. Careless indentation can present a misleading picture.

Ij jere is a program that uses a block in the ' i f statement as discussed
opposite. The program does the same job as the introductory example
but first checks that all items of data are positive.

(jomplicated logic based on 'if else' can be clumsy; we meet more
elegant methods of control later.

/ * WOTCOST with data check * /
#include <stdio.h>
#include <math.h>
int main (void) < T ^ 6 the initiaL >int ' means the Pro9ram returns an
{ ^ ^ * integer to its environment as a signat of success 4

f loat P, Rpct, R, M ; \ ° r faUure; r e t u r n 0 ; (beLow) indicates successJ
int N;
printf ("\nEnter: Principal, Rate%, No. of y rsAn") ;
scanf ("%f %f % i " , &P, &Rpct, &N) ;
if ((P>0) && (Rpct > 0) && (N > 0))

R = Rpct / 100; ^^SS2£^
M = P*R*pow(i + R, N) / (I 2 * (p o w (l + R, N) - 1)) ;

block) p r i n tp ("\ni%.2f, <a%.2f%% costs i%.2f over %i years",P,Rpct,M,N);
^ printf ("\nPayments will total %1.2f", 12*M*N) ;

else
printf ("Non-positive Data") ;

return 0 ;

2 : CONCEPTS 13

IHTRODUCIHG THE for LOOP
THE MOST VERSATILE OF LOOP STRUCTURES

4i|l real programs have Loops. When a program has finished computing one
person's salary it works through the same set of instructions to compute the
next person's salary, and so on through the payroll. That is a bop.

Tjhere are,
however,
different kinds
of loop. This
one is a
'counted' loop;
you specify in
advance how
many times to
go round.

/* Humbug */
#include <stdio.h>
int main (void)
{

int j ;
for ((j ; r f j ; j)

printf ("\nWe wish you a merry Christmas");
printf ("\nAnd a happy New Year!') ;

Ijp this loop, j has a test for continuation d[j<3]) and stands at zero.
Zero satisfies the test, so round we go, wishing you a merry Christmas.
Then j is incremented by 1 ({ ++j is short for j=j+l J) to become 1. The
test (J j<3 D is again satisfied, so round we go for another merry
Christmas. This process continues until j reaches 3, at which stage the test
is no longer satisfied; we don't offer any more merry Christmases; we
drop out of the loop with New Year greetings.

for (expression ; expression ; expression) statement

keyword) evaluated
once only;
before any

others

(typically an \
/ increment. *\
[Evaluated after \
each execution of]

the body

^body ' of ̂
Loop,

[typically a,
J compound d
-, statement

\fou. can specify an infinite
loop by omitting the second
expression (jf implying 1 =
true j) and get out of the
loop with break.

l^ater we meet 'tested'
loop structures; the while
loop and do loop:

/* Count characters until new line */
#include <stdio.h>
int main (void)

int count = 0; char Ch;
for C ; ;)

C
Ch = getc (stdin) ;
if (Ch==\n') break;,
else ++count; •

printf ("\nEntry has % lectors", count) ;
return 0;

while (expression) statement do statement while (expression)

ILLUSTRATING C

INTRODUCING CHARACTER CONSTANTS
"STRINGS" COME LATER

gfrevious examples illustrated type int (J integer]) and float (J floating-
point number^ one that has a decimal point Jjl. Another type is char, short
for character. A character is a letter, digit or symbol.

int i, j = l;

char Ch, k = 'A', dig - V ; l 1
3

k

i 1
'A'l

\+fhat can we assume about the relationship of characters? Some aspects
depend on the character set employed. In ANSI C:

^—v -̂ s^- v^ "\x-—v^" "V N^ i

both alphabets (Lower & upper casejj
are stored in ascending order

digits are stored in ascending
order

digits are stored
contiguously

l\f you work exclusively in the ASCII character set, the following
relationships (not defined in ANSI C) also hold:

f

a
'A

'0

(

'2

1 <

' <

' <

V
'B'

V
—^-~—^-x
character J

3

< ' c '

< 'C'

< '2'

etc.

etc.

etc.

J ^character

etc.

I, I
1

9 T '
'i' + 1 gives ' j '
I ' + 1 gives rJ '
i + (A - a) gives I etc.
I + (a - A) gives I ^^:.

1 ASCII alphabets (not EBCDIC)\
are stored contiguously

* these relationships hold for
EBCDIC Letters also

I jhe previous examples featured scanf() and printf() for formatted
items. For input of a single character from the keyboard use getc(stdin),
and for output of a single character to the screen use putc(Ch, stdout).
Both functions are defined in stdio.h. The parameters stdin and stdout
indicate standard input and output streams defined by the system as
depicted below.

Ch = getc (stdin)

keyboard buffer gets stored
nominated character variable

putc (Ch, stdout)

(the character sto>
in variable Ch is

on the screen*/

/* Echo input in CAPITALS (ASCII only) */
#include < stdio.h >
int main (void)

char Ch;
for (; ;)

= getc (stdin) ;
if (Ch == \ n ') break;
if ((Ch >= V) && (Ch <= 'z'

Ch = Ch - 'a ' + 'A1;
putc (Ch, stdout) ;

return 0;

2: CONCEPTS 15

AN 'OBJECT' COMPRISING 'ELEMENTS'

TJne little boxes illustrated earlier are individual boxes for values of type
int, float and char. You may also declare arrays of such boxes (J arrays
of elements j). In any one array all elements are of the same type.

int M [6] ; ',

M[0]
M[l]
M[2]

M[4]
M[5f

int

float Wow [3] = {36, 18.5, 34 } ; ! char Letter [14];

V izer J

4\n array may be initialized as shown for
Wow[] above. I f you initialize all the elements
you may leave the brackets empty and let
the processor do the counting:

V implied by the initializer

Letter! 0]
Letter! l]
Letter! 2]
Letter! 3]
Letter! 4]
Letter! 5]
Letter! 6]
Letter! 7]
Letter! 8]
Letter! 9]
Letter[l0]
Letterfll]
Letter[l2]
Letter[l3]

char

float Wow [] = { 36, 18.5, 34 };

l\f the size is declared you may supply fewer initializing values; the
processor pads out with zeros.

float M [5] = { 1, 2 } ; \ implies { 1, 2, 0, 0, 0, 0 }

int Coef f s [5] [3]

may have any number of dimensions. Here is a two-dimensional
Q r r Q y ; int [0] [l] [2]

7 Coeffs [] P
i [

[2]
[3]

TJfhe array is stored by rows.

^ \ u l t i dimensional arrays may be initialized using nested braces:

1
1
1
1
1

1
2
3
4
5

0
1
3
6
10

int Coe f f s [5] [3] = { { l , l } , { l , 2, l } , f l , 3, 3}, f l , 4, 6}, { l , 5,

\ missing items imply zero
_ you arrange values by rows, and include all of them, you may
ignore the inner braces:

int Coeffs [] f3] = { 1, 1, 0, 1, 2, 1, 1, \ 3, 1, 4, 6, 1, 5, 10 };

5 not necessaryju is necessary) *f 0 is necessary

16 ILLUSTRATING C

NESTED LOOPS

£|on-mathematicians don'\ go away! This is
business. There are three sales people selling
four products. Quantities sold are tabulated
in Table A:

A
[01
111
[2]

\0]
5
3
20

PRODUCT

[1]
2
5
0

[2l
0
2
0

[31
10
5
0

B

P
R

O
D

U
C

T 01
1]

r2]
r3]

MONEY
[0] [1] _
1.50 0.20
2.80 0.40
5.00 100
2.00 0.50

l iable B shows the price of each product and
the commission earned by selling each item.

money brought in is calculated thus:

\nd the commissions
earned thus:

[0] 5 * 150 + 2 * 2.80 + 0 * 0.50 + 10 * 2.00 = 33.10
[l] 3 * 1.50 + 5 * 2.80 + 2 * 0.50 + 5 * 2.00 = 38.50
[2] 20 * 1.50 + 0 * 2.80 + 0 * 0.50 + 0 * 2.00 = 30.00

[0] 5*0.20 + 2 * 0.40 + 0 * 1.00 + 10 *0.50 = 6.80
[l] 3*0.20 + 5 * 0.40 + 2 * 1.00 + 5 *0.50 = 7.10
[2] 20*0.20 + 0 * 0.40 + 0 * 1.00 + 0 * 0.50 * 4.00

j his computation is
called matrix multiplic-
ation and looks best
as set out below.

AM
A[l]
A[2]

r [0]
5
3
20

[1]
2
5
0

[2]
0
2
0

[3]
10
5
0

[0]
1.50
2.80
5.00
2.00

33.10
38.50
30.00

the number of columns of
A must be the same as

number of rows of B and the result has as many rows as
A & as many columns as B

^ _ r e is a program to input data for matrices A and B, multiply them
together, then display their product, matrix C.

/ * MATMUL Matrix multiplication * /
#include <stdio.h>
float A [3] [4], B[4][2], C[3][2]
int n, i, j , k;
int main (void)

for (n=0; n<3; ++n)
scanf ("%f %f %f %f", &A[n][0],

for (n=0; n<4; ++n)
scanf C "%F %f", &B[n][0], &B[n][l]

for (i=0; i<2; ++i) r^T^l^L - -
c / . . . , N (^ /7^ r >4 bu rows
for C j=0; j<3; ++j) v — - - y ^ -

C[j] [i] = 0; (enter'B by rows

for (k=0; k<4; ++k)

} J J

for (n=0; n<3; ++n)
printf ("\n%.2f %.2f " , C[n][0], C[n][l])

return 0;

&A[n][2], &A[n][3]

3
20

1.50
2.80
5.00
2.00

33.10
38.50
30.00

2
5
0

0.20
0.40
1.00
0.50

6.80
7.10
4.00

10
5
0

orogram displays
£ by ^*

2: CONCEPTS 17

ILLUSTRATING NESTED LOOPS
AND ARRAYS OF CHARACTERS

£ \ school we hung little weights on the
end of a spiral spring and measured its
extension. I f the spring extended 12mm on
adding a one-gram weight we found it
extended a further 12mm on adding the
next gram. In other words we showed
that extension is proportional to the
force applied.

Robert Hooke (f 1635 - 1703 D
discovered this law and expressed it in
Latin as 'ut tensio sic vis' (f as the
extension, thus the force)) . Then he
tried to patent his discovery. To establish
ownership before disclosing the secret,
he published an anagram of 'ut tensio sic
vis', made by arranging the letters of
that sentence in alphabetical order.^nrence in aipnaoencai oraer. i ,. ,,j

/#lere is a program to compile Hooke's anagram. Run the program to see
the anagram he published.

/* Anagram of Hooke's Law */
•include <stdio.h>

xthe number of Letters

int main (void)

char Letter [14] = f u V ^ V ^ ' , V,'i ', 'o', 's','i',V, V, ' i ' , 's ' } ;
mt j , k, Tempry; /S^pH^
for (j = 0

for ; j ;)
if (Letter [k-l]> Letter [k])

Tempry = Letter [k - l] ;
Letter I k-l] = Letter [k] ;
Letter [k] = Tempry;

printf ("NnHooke's anagram is ") ;
for (j = 0; j<14; ++i)

putchar (Letter [j]);
return 0;

swop
adjacent
Letters

^ h i s program illustrates the technique called 'bubble sort1 which is suitable
for sorting small lists. For longer lists there are better methods such as
Quicksort & which is explained on Page 62.

18 ILLUSTRATING C

l^ere is how the bubble sort works. To keep the illustration simple we
shorten the quotation for uttensiosicvis to utten.

^ ^ ^ ^ — v
TJhe outer loop is controlled by j which starts at 0 as depicted in the
first row of the table below, k is set pointing to the bottom letter. That
letter is compared with the letter immediately above it (f Letter [k-l] >
Letter [k]]) . I f these two letters are out or order they are exchanged,
otherwise left alone. Notice that the first two letters to be compared (f n
below, e above J are in the correct order.

Qtill with j set to zero, k is decremented by 1 so that it indicates the
next letter up. This letter is compared with the letter immediately above it
as before. I f the two are out of order they are exchanged. In this case
(J e below, t above]) they are out of order and therefore exchanged.

4f\gain k is decremented so as to indicate the next letter up. Again this
letter is compared with the letter above it and an exchange made if the
two are out of order. And so on until k has risen to a position just
below j . That completes the first cycle of j . The lightest letter has now
risen to the top.

lyack to the outer loop; j is incremented so that it indicates the second
letter in the list, k is set to the bottom of the list. Then the whole
procedure, described above, is started again. But this time there is less to
do because k does not have to rise so high. In the second cycle of j
the second lightest letter rises to the second position in the list.

4\nd so on until the list has been sorted

3 - 0

3 = *

3 = 2

j s 3

k =

j-3^0
1
2
3

k-*-4

2
3,

k-*-4<

1

3
k-^4

0
1
2

3-^ 3J
k-^4<

4

' u
t
t
e

, n J

e
u
t

ft *̂

e '
n
u
t
t ,

'e
n
t

^U"*s

OK

e
n

n
t

OK

t
t

k =

3-+<t>
1
2 .

k —>~3^
4

j—*- l
2 *
3^

k—*-4

1

k - ^ 3^
4

(risen to)
t 7 HoA S
u \

3

u "
t

e*
.n .
*e "
u

n^
t

e
n
u-\
t ^
t .

e
t

n
t

k =

1 .
k-P-2(

3
4

0

k-^2<
3
4

^ (risen to\
u 7 A b . ^

2

U

t
%n.

e"

t

(
(

e
t

n m.
u \

react

k = 1

3-^4>'t

2
3
4

"unj e
^eVfu
t K^
t (e l
nfrisen

Ho.2f

by row J

2 : CONCEPTS 19

MORE CONCEPTS ^
IN PARTICULAR THAT OF 'CALL BY VALUE'

Tj*he introductory example used a function from the math library called
pow() (j short for power)).

pow (

(expression: its value) expression: its
ting the value to Rvalue being the

b raised j~*[power by which^
to raise

yjxample: 2.0 ' would be expressed pow (2.0, 3.0); the value returned
would be 8.0.

TJfhe parameters of the library function pow() are, in general, both of
'floating' type. In the introductory example, however, the second
parameter was constrained to whole numbers by being declared of type
int. This constraint is essential to what follows.

Ij4ere is the first example again, but instead of using pow() from the
math library we supply and invoke our own function, Powr().

/ * WOTCOST with home-made Powr() * /
#include <stdio.h>
float Powr (float x, int n)

float v ;
for (v=1.0; n>0; n—) ^(declarations

v = v * x ;
return (Y) ;

int main (vo id)

float P, Rpct, R, M;
int N;
printf ("\nEnter: P, Rate%, Nyrs\n") ;
scanf ("%f %f % i " , &p, &RpCt, &N) ;
R = Rpct/100;
M = P*R*Powr(i+R, N)/(i2*(Powr(i+R,
printf (Costs i%1.2f per month", M);
return 0;

} (program \

(program

TJhe home-made function is dissected below:

i Include math.h
header of home-made

function. Powr()

block of code for
home-made

function, Powr ()

main () much as before

invoke Powr (J
twice

Enter P, Rate%, Nyrs

5000 15.5 5

Costs £125.77 per month

I float Powr() ; / l / h e header gives the name of the function
^ being defined and the type of value the function

will return. I f the function returns no value at all, write void.

20 ILLUSTRATING C

flogt Powr (f\oa\ x, int n) I y*he header also shows how many
parameters there are, and the type of each. The names of parameters
in the header are names of dummy parameters ^ * private to the block
that follows the header. It does not matter if these names coincide with
names in main (f or in any other function that might invoke Powr j) . In
this example, n could just as well be N ^ - * without confusion with the N
declared in main.

rloa v ; | \ ^ r j a b | e v iS private to the function; a local variable.
Outside the function any reference to v would be treated as an error.
But when the program obeys a statement that invokes the function, a new
variable v is created. When the program has finished with the function
({ having returned a value to the invoking statement]) the variable v,
together with its content, evaporates.

for (v=U3; n>0; n«n-l) j \^&r i ab le v is initialized to 1.0 before the
loop is executed for the first time. I f Powr() were invoked with a value
of 3 for n, the body of the loop would be executed 3 times. n=n-l may
be abbreviated to n-= l or —n as previously shown.

v = v * x ; \ TJhis is the body of the loop, v begins at 1.0. The
accumulating value in v is multiplied by the value found in x (f computed
from 1+R in this example]) on every circuit of the loop. This statement
may be abbreviated to v *= x as we shall see.

return (v); \ yriis is an instruction (j[return is a keyword]) to stop
executing statements of the function and offer the value in variable v as
the value to be returned by this function. The 'return 0 ' at the end of a
main() program returns 0 to its environment if execution has been
successful.

FUHDAMEHTAL TO C-LAHGUAGE

\fhen you write a statement that invokes the function (f in this case the
relevant part of that statement is Powr(1+R, N) ^ you substitute
appropriate expressions for the dummy parameters x and n. Here we
substitute 1+R for x and substitute N for n.

\ f /hen the processor comes to obey the statement in which you invoke the
function, it works out the value of 1 + R J this might be 1.1, for example j) and
the value of N Q(this might be 3, for example J). The program then starts
obeying the statement { in the function block} with x initialized to 1.1 and n
initialized to 3. This concept is known as call by value.

Although you invoke the function with Powr (1+R, N) the function is
incapable of changing the content of variables N or R. In general, no
function in C can change the content of a variable offered as an
argument.

4 \ function can change the contents of global variables, as demonstrated
on the next page. A function can also change values to which pointers
point, but this topic is left until later.

2: CONCEPTS 21

INTRODUCING GLOBAL
& LOCAL VARIABLES

M =

where R«

PR(l + R)N
Tjfhe program in the first example computed the
monthly repayment for a loan, given the size of the
loan, the rate of interest and the term. But here is
a more difficult problem; a loan of P is to be
repayed at M per month over N years; what rate
of interest is being charged?

i fhe equation shown above may be solved for R by trial and error.
Guess R, substitute in the formula to compute Mt, then:

• if Mt is the same (f very nearly J as M the guess was correct;
accept R

• if Mt is too small it means R was guessed too low, so multiply
the rate by M/Mt to make it bigger and try again

• if Mt is too big it means R was guessed too high, so multiply
the rate by M/Mt to make it smaller and try again.

Tjfhis algorithm causes the ratio M/Mt to get closer and closer to l .
Make the program continue as long as the difference between M/Mt and
1 is more than 0.005 (J say)). The difference may be positive or
negative, so we must ask if its absolute value (J value ignoring sign]) is
greater than 0.005.

yfjere are some global declarations and three functions:

/ * WOTRATE: computes rate of loan interest * /
•include <stdio.h>
float P, M, R = 0 .01 ;
int N; < ^ 3 ^ globaUy
float Powr (float x, int n)

float v ;
for (v=1.0; n>0; n=n-l

v = v * x ;
return (v) ;

float Formula (void)
{

. _

computes formula at top of pagef
preferring to global Pf Rf N, hence nOj
^\need for parameters. Formula()

^^^^^\invoke$ Powr()
float v ; - - -
v = Powr (l + R, N) ;
return (P * R * v) / (l 2 * (v - l)) ;

this v is local to Formula()>
no connection with v in Powr(J)

float Absolute (float P)

if (P >= 0.0) return P;
else return -P ;

}

\ local P 'hides' global f)

I more concisely
float Absolute (float P)
{return (P<0.0)?-P: P;} '

22 ILLUSTRATING C

l/inally FuncHon main():

int main (void)

float Mt;
>Mt is local to main ().

printf ("\nPrincipal, Repayment p.m., No.yrs.");
scanf ("%f %f %i" , &P, &M> &N); ^^y

isee flow chart on Page 52

Mt = Formulae);
R = R*M/Mt;

do
{

while (Absolute (M /Mt - 1) > 0.000001);
printf ("\nRate charged is %5.2f%\n
return 0 ;

Principal, Repayment p.m.

3750 195.36 2

Rate charged is 16.69%

No.yrs.

A FEW FUNDAMENTALS

Xy'ariables P, M, R, N are declared at File Level or globally which means
outside every function. Implications of global declarations are:

• the processor reserves space for the variables declared. Declarations
that reserve space are called definitions

• global variables retain the space reserved for them throughout the run.
Their contents do not evaporate during the run

• variables may be referred to by statements in functions provided that:

(i) any reference Follows a declaration in the same file (f or follows
an extern declaration if in a different file <£* see later J

(i i)the name referred to is not hidden by a local variable (flike
variable P in function Absolute() opposite]).

\ f ariable v in Powr(), and variable v in FormulaO, have only a
transient existence. Although v is declared in Powr() on the first line after
the header, it is not defined until Powr() is invoked. It then exists only
until control reaches return (v) . At this instant control leaves Powr(),
and variable v evaporates, together with its contents. Puff! Next time
Powr() is invoked, variable v could find itself somewhere else in memory.
Such variables are called automatic to distinguish them from the static
variables which retain identity throughout the run.

2: CONCEPTS 23

DEFIHITIOH OF A FUNCTION TO INTRODUCE
AN IMPORTANT PROGRAMMING CONCEPT

TJfhe highest common Factor (£ hcF]) oF 1470 and 693 is 21. In other
words 21 is the biggest number that will divide into 1470 and 693 without
leaving a remainder in either case. To veriFy this, Factorize both numbers
to prime Factors:

1470
693

and pair oFF any common Factors » in this case 3 and 7. The highest
common Factor \ also called the greatest common divisor 2) is the
product oF these: in this case 3 x 7 = 21.

Euclid's method oF Finding the hcF is more elegant. Find the remainder when
1470 is divided by 693. d The % operator gives this remainder !):

1470 % 693 £==£>* 84
Because this remainder is not zero, repeat the process, substituting the
second number For the First and the remainder For the second:

693 % 84 C = v > - 21
This remainder is still not zero so repeat the process:

84 % 21 c = = ^ 0
This remainder is zero, so the hcF is 21. Nice!

Jere is a C Function based on Euclid's method:

int HCF (int n, int m)
f

int Remainder;
Remainder = n % m;
iF (Remainder != 0)

return HCF (m, Remainder);
else

return m;

this works both
when n > m and

when m > n

f- signifies
HOT EQUAL TO

function HCF
invokes itseLf

int HCF(int n, m)
{ return n%m ? HCF (m, n%m) : m }

l\\ is easy to see what would happen with HCF (84,21) because Remainder
would become zero, making the Function return 21. But with HCF (1470,693)
Remainder becomes 84, so the Function invokes itself as HCF (693,84). In
so doing, Remainder becomes 21, thereFore the Function invokes itselF as
HCF (84,21). It is as though C provided a Fresh copy oF the code oF
Function HCF() on each invocation.

WHCF(l470,693))

long
HCF(l470,693);

Remainder =
1470%693 = 84

return

Jong
HCF(693,84);

Remainder =
693%84 = 21

long
HCF(84,2l);

Remainder =
84%21 = 0

return

if he ability oF a Function to invoke a Fresh copy oF itselF is called recursion.

24 ILLUSTRATING C

IJf you find the function opposite confusing, here is a simpler example;
the hackneyed factorial:

TJhe factorial of 5 is 5 x 4 x 3 x 2 x 1 « 120. Mathematicians indicate a
factorial by a post-fixed exclamation mark:

5! = 120

It is obvious that the factorial of 5 is 5 times the factorial of 4:

5! = 5 x 4!

So what is the factorial of n? Clearly:

n! = n x (n - l) !

But that's too hasty. What if n is 1? If n is 1 then factorial n is 1.

l this to the computer by encoding:

'if n is 1 then factorial, n is 1,
otherwise factorial n is n times factorial (n-l)

•include <stdio.h>

long int Factorial (long int n)

if (n==l)
return 1;

else
return n * Factorial (n-l);

try out the function by appending a simple main() function:

iint main (vo id)

long int m, k;
printf ("\nlnteger please\n");
scanf (" % l i " , &m) ;
k = Factorial (m) ;
pr in t f ("%l i " , k) ;
return 0;

4 *(£Worial (3),
which is
4*
so return

T rn

factorial (2)
which is
3*(T
so return

L
rn 9̂ 1 so
compute—
2 *(£actorial (i
which is

50 return

2: CONCEPTS 25

l\ p rog ram MATMUL multiplies matrices of fixed size (j 3 rows, 4
columns; 4 rows, 2 columns J). Make the program deal with any
specified sizes up to an arbitrary {00 by 100.

Read three sizes: the number of rows of A, the number of
columns of A (} implying also the number of rows of B]), the
number of columns of B. Read A and B by rows, then print C by
rows. For this exercise you have to change each simple reading
loop to a nested pair of loops. Similarly the printing loop.

Zjjjter the Hooke's Law program to read and sort a list of numbers
| type double J) into numerical order, then display the sorted list.
Make the program request the length of list, then ask for the
numbers one by one.

[for the math library functions sin(x) and cos(x), the value of x
must be expressed in radians. Write functions Sine (a) and Cosine (a)
for which the argument, a, must be expressed in degrees of arc.
All types are double.

\ffr\\e function Reverse (A, N) to display an array of integers in
reverse order. An obvious way to do this is print A[—N] in a loop
until N stores zero. Instead of using a loop, write the function so
that it employs recursion.

26 ILLUSTRATING C

Tjfhis chapter defines most of the basic components of C.
Their syntax is defined using a pictorial notation. Charac-
ters, names and constants (£ the simple building blocks}) are
defined first. Important principles of the language are next
explained; these include the concept of scalar types', the
precedence and associativity of 'operators', the concepts
of 'coercion' and 'promotion' in expressions of mixed type.

i j he operators are summarized on a single page for
ease or reference.

TJhe syntax of expressions and statements is defined in
this chapter. Declarations are discussed, but their syntax is
not defined because it involves the concept of pointers
and dynamic storage. These topics are left to later chapters.

TO DESCRIBE THE WRITTEN FORM (SYNTAX)
OF THE BUILDING BLOCKS OF C

It a precise definition of the syntax of ANSI C, see the definitions in
NSI X 3.159. These are expressed in BNF (f Backus Naur Form]).

J appreciate the syntactical form of an entity the practical programmer
needs something different; BNF is not a self evident notation. Some books
employ railway track diagrams, potentially easier to comprehend than BNF,
but the tracks grow too complicated for defining structures in C. So I
have devised a pictorial notation from which a programmer should be
able to appreciate syntactical forms at a glance. The notation is fairly
rigorous but needs a little help from notes here and there.

italics

integer

Romans,
& + (* /
012 etc.

Italic letters are used to name the entities being defined:
digit, token, integer and so on

The broad arrow says that the nominated entity 'is
defined to be . . . ' (J in this example 'An integer is defined
to be ... '])

These stand for themselves. Copy them from the diagram
just as they are. Do not change case; R and r are not
the same letter

Vertical bars contain two or wore rows and offer the
choice of one row. Vertical bars may be nested

Forward arrow says the item or items beneath may be
skipped over; in other words they are optional. In some
cases a word is written over the arrow: this defines the
implication of skipping the item under the arrow

Backward arrow says you may return to go through this
part of the diagram again fl typically choosing another
item from vertical bars j)

This also says you may return, but must insert a comma
before the next item; it defines a 'comma list'

definitive

before the next item; it defines a comma list

Notes may be explanatory or definitive. A typical defi
note points to expression and says 'must be integral

This symbol is put in front of illustrations; it says 'for
example' or 'e.g. '

28 ILLUSTRATING C

Letter
digit
symbol
escape

TXhe diagram says:
'A character is defined
as a Letter or digit
or symbol or escape'

letter

symbol

digit\Jpper and lower case letters are distinct
in C. Z is not the same letter as z.

l^igits 0 to 9 are decimal digits. Octal and
hex digits are defined on Page 197.

44 few characters, such as $, £, <s>, are available
in most implementations of C. They may be used
as character constants and in strings but are not
defined by ANSI C.

£^o every installation can manage the full range of
symbols. The Standard gets round this problem by defining
a range of trigraphs. I f you type ??<, for example, the
implementation should substitute the code for a left brace.
And similarly for the other trigraphs. Substitution is carried
out before any other operation on the text.

l\n Chapter 1 you saw the escape sequence \n which is
effectively a single character, although compounded of
two. It represents the new line character. It is no good
pressing Return to get a new line character because that
would mess up the layout of the program. You don't
a new line in your program \ you want the computer to
make a new line when printing results. \n does the trick.

4p\n escape sequence* is needed whenever the character to be
conveyed would upset something, or has no corresponding key
on the keyboard « - like 'ring the bell'.

4 \n example of 'upsetting
something' is a double
quote in printf (" ") ;
which would close the
quotation prematurely. You
can include a double quote
in a quotation as the single
escape sequence \ " as
follows:

pr in t f (" \ "0oh! \ " I exclaimed.");

A
a
B
b
C
c
D
d
E
e
F
f
G
9
H
h
I
i
J

K
k
L
I
M
m
N
n
0
o
P
P
Q
R
r
S
s
T
t
U
u
V
v
W
w
X
X

Y
y
2
z

3: COMPONENTS 29

name Letter Letter
digit

TJ*he example programs in the first
chapter illustrate several names
invented by the programmer to
identify variables. Such names are
also called identifiers. Names are
used to identify other things in C ^ "
apart f rom objects such as variables.

^he diagram shows that a name starts with a letter or underscore, that
the first character may be followed by other letters, digits, underscores.
Examples are: LengthOfWall, Lenth_Of_Wall, DATE .

i / h e name you invent should not clash with a keyword. There are
thirty-two keywords in ANSI C as listed here. Remember that upper and
lower case letters are distinct, so Auto and Break are not keywords and
may be use as names of variables.

TJfhe names chosen fo r use in the
programs of this book are safe f rom
clashing with keywords or with names of
standard library functions. The names used
are:

keyword

• single letters e.g. i, N

• capitalized words e.g. Length

• capitalized phrases e.g. NewLength, Old_Height

X/OKX may not give the same
name to an array and to a
variable in the same piece of
program.

int Smith [6] ;
float Smith \

Up general, functions and objects (J i.e. variables, arrays,
structures, unions, enumerations j) have unique names in
the same piece of program. If an object that is local to
a function has the same name as a global object, the
global object becomes hidden from view.

£ lo t all names behave in this way; names of tags and
Labels^ for example, do not clash; they occupy a
different name space. Name space is explained in Chapter 5.

auto
break
case
char
const
continue
default
do
double
else
enum
extern
float
for
goto
if
int
long
register
return
short
signed
sizeof
static
struct
switch
typedef
union
unsigned
void
volatile
while

ILLUSTRATING C

WE MEET AGGREGATES
AMD COMPLEX TYPES LATER

typical declaration at the beginning of a program is:

int main (void)
{

static float a[] = { 1.5, 2.5 }

optional
specifier

... with optional
initializers

TJfhe implications of specifiers, declarators, initializers are far-reaching
and complicated. All are explained in subsequent pages. For the moment,
consider a declaration of a simple scalar (f single valued]) variable.

Tjhe syntax for scalar type is defined as follows:

signed
unsigned

float

long double
void

short
long

char

int >\J2oUnngJ implies int
• long int

• signed char
y float

• long double
• void

Tjfhe diagram is simplified for clarity; the syntax of C allows
permutations. For example, the following are all allowed and equivalent:
signed long int, long signed int, signed int long, etc.

2/ou can define an alias (synonym) for a phrase using the typedef
facility:

yx^i alias

typedef type name

typedef long signed int
Lanky i, j ;

3 : COMPONENTS 31

(*T\ X ^ J " } r^y^r^Tft^ A TYPICAL IMPLEMENTATION

Tjfhe number and arrangement of binary digits (j[bits J) representing each
scalar typ>e depends on the implementation, subject to certain minimal
requirements if the implementation is to comply with ANSI C. The following
implementation is typical.

unsigned char ^ , ^ O.K. for full PC character set

char m I ^ ^ - ^ - ^ - ^ ^ ^ O.K. for ASCII character set

-128 ->-127 (k^)-^(2j-l)y

unsigned int i | | 0 -*- 65,535 f 0 -^ (21G-1)
15 0

Short int U | 1 -32,768 -*-32,767
15 0

in* 1;! | | -32,768 - • 32,767 (- (2 1 5) - ^ (21 5- l)

unsigned long l \ | l |

0 -*- 4,294,967,295

long tg I I I I
31

-2,147,483,648 -*- 2,147,483,647 f-(

gniFicand) T *
xexponentf Z3T ^ ^ ^ ^ aecimai-aigit

l / j ^ ^ ^ ^ J 1 p r e d S i O n

^ -) -3.4x10°" -*- -3.4x10 "" -^- 0 -> +3.4x10'38 ^ - +3.4xl038

double About 15 decimal-digit precision

WVZV////Y/W/A . . 1 1 1 I 1 1 ~1
63 51 0

308 - 3 0 8 -308 308
-1.7x10 —>- -1.7x10 ->• 0 ->• +1.7x10 —>- +1.7x10

long double About 19 decimal-digit precision

mwawwxmx i i i i i i i . J
19 6Z 0

4-932 —4932 ""4-932 4-932
-3.4x10 -*- -3.4x10 ->- 0 ->- +3.4x10 ->• +3.4x10

r^XS^~-s s-vTiK-v ^^-^5|^-w /^>^^^N / ^ V ^ ^ ^
> biggest \ >smattest\ [preciselyJ (smallest) (biggest \
\negativej > negative] X^zero^J (positive J (positive

32 ILLUSTRATING C

DEFIHITIOHS OF 'LITERAL ' CONSTANTS

^fhe introductory program has the line R = Rpct / 100; The 100 is a
Literal, constant. The program on Hooke's anagram illustrates character
constants, V , V, etc. These are also Literal constants. Hamed constants
are introduced over the page.

constant integer
number
char-const
name named

constants &
enumerations

integer

digit

digit

see previous
page for:

long
unsigned
float
long double

integer, number, char-const

• 0 zero
• 27 27 decimaL
• 033 octal for 27 decimal
• 0XlB hex for 27 decimaL
• 0L zero as a long
• 27UL 27 as unsigned Long

octal digits: 0, 1, 2, 3, 4, 5, 6, 7
hex digits: 0, i, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Lower case Letters are
synonymous as digits Asa etc.

>r~^s—^~^—^—v

>

•

•

0
23456
00.001
23.4E-6
0L
1.5F

Letter
digit
symbol
escape

• 6

« > 7 ^ backslash j

« ' /7^ apostrophe

"STRINGS" ARE DEFINED IN CHAPTER 6

3: COMPONENTS 33

HAM ED USING const OR fdeftne

\ your program deals with the
geometry of circles you may write the
value of K as a literal constant:

Area = 3.141593 d / 4 ;

/* Program 1 with circle
•include <stdio.h> ~ ^
int main (vo id)

const^Pi =

*v

* d * d * / 4:\^Jr give n a name and value as
shown here:

Tjhe const is a qualifier. It qualifies the variable declared next on its
right. The nominated variable should be initialized in the same declaration.
Thereafter, the processor will not allow you to change the initialized
v a l u e r by assignment or any other means. You may not use this kind of
constant in 'constant expressions' evaluated at compile time.

Tjfhe traditional way to name a C
constant is to write a name (f PI say])
and tell the preprocessor to substitute a
value for it.

\/r\\e #define with # as the first
visible character on the line and no
semicolon at the end as shown. From
there on the preprocessor will substitute
3.141593 for every independent occur-
rence of PI (f not in comments or
where PI is part of a longer token]).
The preprocessor is covered in Chapter 5

/* Program 2 with circles */
•include <stdio.h>
•define PI 3.141593 j
int main (vo id) ,

I untouched

PIPE = 6 ;

NAMING CONSTANTS CALLED 'ENUMERATIONS'

enumeration >enum name

integral .

expression } name ;

ijntegral constants may be named in an enumeration. You may nominate
Int variables capable of storing int values in the range of the enumeration

• enum f No, Yes } ;
• enum Boolean { False, True };
• enum Boolean Ok; __
p~ enum Imperial {Inch=l, Foot=i2*Inch f X ;

Ok correctly used
of its enumeration

or ra
a COH

Ok =
if (

Ok =
Ok =
Yes

Ok

E (

= 2

a
.'=

a
*

> b)
Yes ;

> b)
Yes;

? True : False; "*^Cra
) break; ^^\^i

; < J d probably all
-S^Q not nice; o

~z2z3 error: Yes

34 ILLUSTRATING C

THIS TERM COVERS A
VARIETY OF CONSTRUCTS

Impressions are used in earlier examples without formal definition. The
definition of expression is simple:

^ • * .

• - a + b * c

Operators are described individually later in this chapter; here they are
defined syntactically under the names prefix, postfix and infix*

prefix

f + see pages 39 to 45
& summary on page 46

infix

l\n the following definition of term^ the optional entity
called type-name has yet to be introduced; it is defined
on Page 135.

term

of an
I object i

constant

string

name

name [expression]

name (expression)

(type-name) expression

expression! expression: expression
~^—

sizeof expression

(type-name)

(expression)

(expression)

• 6L

• "Ans: % i "

• Table [3][4]

• Powr(l+R,N)

• (double) i

• x<0 ? -x : x ;

^ sizeof Table

• sizeof(double)

^ sizeof(a*b+c)

• (y * (a+b))

/
%

<=
ss

I-
& &

»=

1=

3 : COMPONENTS
35

AND

l # l e r e is the syntax of statement. Some control statements have already
been introduced (J if, for, break, return]), others are covered in
Phnnl-or AChapter 4.

statement block

if (expression) statement else statement

while (expression) statement

do statement while (expression) ;

for (expression \ expression; expression;) statement

switch (expression) statement

case expression : statement

break;

default : statement

continue;

return

goto nameT

name : statement

• { irrt i * l ; a

expression ;
fnonrinatesx

a label i

{ declaration statement }

I^Jecause a statement may be a
& x £ and because a Ak%r>f contains
at least one statement, it follows that
blocks may be 'nested'. All the
declarations in each block must
precede the first statement of that
block.

£)elow is the syntax of program:

program declaration 4f\ program comprises a set of
declarations* each of which may declare

ject, a function prototype or a function definition. You musta global
give precisely one function the name main.

36 ILLUSTRATING C

OF 'OBJECTS' AND FUNCTIONS
(FOR FULL SYNTAX SEE CHAPTER 8)

Subjects ' (f or 'data objects')) a re variables, arrays, enumerations,
structures and unions. We meet structures and unions in Chapter 8 .

v^bjects are things which have a name and a type (f or shape]) and can
store da ta . An object must be declared before it can be used.

y e c a u s e structures and unions have not yet been introduced, the full
syntax o f a declaration must wait until later (f Chapter 8 } . Some
examples o f typical declar- ~~ ~~
ations o f simple types are
shown here :

int j , k;
char Letter[] = {
float x = 3.45;

a , b , c j ;

Jjfach declaration applies as far as the end of the current file (J the
scope' of the declaration j). But in a block of program within this scope,
a contradictory declaration may 'hide' the original H[the 'visibility' J). Scope
and visibility are further described below.

A SEMANTIC DIFFERENCE

/hen an object is initialized (J e.g. float x = 3.45 j) the declaration
becomes a definition \ any further defining of x would make the
processor report an error during compilation or linking.

4>\n object declared but not initialized ({ e.g. int i) is, in general,
automatically initialized to zero at the end of compilation as though you
had originally declared int i = 0. The object is then defined.

TJfhe differences between declaration and definition are semantic rather
than syntactic. The differences are, in fac t , more complicated than
suggested above, and are further described in Chapter 5.

SEQUENCE OF DECLARATIONS

l /unction Absolute(), introduced
earlier, is defined again here.
Statements inside this function, and
statements inside functions that
follow this definition, may all invoke
Absolute(). Invocations f rom inside
functions that precede this definition
would be errors.

R e f e r r i n g back to the program on
Page 22, notice that function Powr()
precedes function FormulaO in
which Powr() is invoked, and that
FormulaO precedes main() in which
FormulaO is invoked.

float Absolute (float P)
{

if (P >= 0.0)
return P;

else
return - P ;

Absolute (y)

3: COMPONENTS 37

PROTOTYPE DECLARATIOHS, VITAL TO ANSI C

float Absolute (floaO;

float Absolute (float P) ;

name optional]

Tf he restriction on sequence of
declarations explained above may
be removed by employing a
Function declaration as well as a
function definition.

function declaration is called a prototype \ a concept new to ANSI C.

4 \ prototype has the same form as the header of a function definition
except:

• names of variables are simply comments; they may be different from
those in the definition or omitted altogether

• every prototype ends with a semicolon.

y|ach prototype must be placed somewhere before the first invocation of
the corresponding function; an obvious place is near the top of the file.

prototype, outside all
function definitions

this statement recognized

relative Location of the
definition is no longer

significant

float Absolute (f loat);

Absolute (2 * a / b)
= ^ 3 c =

rfloat Absolute (float P)
f

if (P>=0.0)
return P;

else
return - P ;

prototypes did not exist in 'old-style' C. Furthermore, the shape of a
function definition was different, the parameters being declared between
the header and its block. Although this syntax is permitted by ANSI C, it is
not illustrated further in this book.

namesof parameters onlydouble OldFun (a , b, c)

char c ;

TJfo keep a program tidy, collect all the prototypes in a file and qive
the file a name such as MYHDR.H (j[where .H signifies a header Rbe y . At
the top of your main program write #include "MYHDR.H" which has the same
effect as copying out all the prototypes ahead of the main program.

38 ILLUSTRATING C

ARITHMETIC, LOGICAL, BITWISE,
ASSIGNMENT, INCREMENTING, SEQUENCE

_ Page 35 operators are grouped according to their role in the syntax
of expressions (J prefix, infix, postfix]). Here they are classified according
to the kind of work they do.

TJhe term operand signifies expression, the expression conforming to any
special requirements noted (f such as integral value J.

• -pow (2 , 16)

Value of operand unchanged

Value of operand negated

operand operand a
a
a
a

+ b
- b
/ b
* b

Sum
Difference
Quotient
Product

operand % operand • a % j

*both integral V ?'non-zero k

'Modulo'; the remainder
when i is divided by j

<= &&

l^ogical not is a prefix operator

operand • .'Try I f Try contains a non-zero
value ((true^ then !T ry
indicates a ze ro value
((false]). And vice versa

3: COMPONENTS 39

I jach comparison made using the following six infix operators takes the
result l (f type int D if the comparison proves to be true\ zero if it
proves false.

• j
operand > operand • n > m Greater than d[&>5 gives lj)

Greater than or equal to
Less than ({6<5 gives 0%
Less than or equal to
Equal to
Not equal to

: :

yVuth tables for the operators && (f and j) and || fl or J are shown.
The symmetry of the tables shows that these operations are commutative.
For example, i && j gives the same result as j && i ;

n >
n >
n <
n <=
n =
n U

m
« m
m

= m
= m
= m

operand operand • i && j
• i

Logical and d 2 && 3 gives 1])
Logical or

and

| ^ 0

§= 0

opera

t 0

1

0

nd

= 0

0

0

or
II

§ - 0

opero

* 0

1

1

ind

= 0

1

0

l^itwise operators are vital for screen graphics, for packing and
unpacking data, and other devices of the programmer's craft.

4k\ll operands of bitwise operators must be integral. Because computers
have different ways of representing negative integers, use bitwise
operators only on the unsigned types.

unsigned int on your installation may be represented as a 16-bit word. If
so, 26 will be stored like this:

11010 (binary) 2 = 26 (decimal)

_m is stored as sixteen 0's. The biggest number (J 1+2+4+8+16+... +32768
= 65536 J is stored as sixteen l's.

0 Ioio loioioioioioloioiolololoToToi

€5536 I t l l l l l l l l l U l l l l X J l l l IX 1 1 1 1 11 LI I

ILLUSTRATING C

operand operand X & XII
X I XII
X A XII

Bitwise and
Bitwise or
Bitwise exclusive or

operand • X « N

• X » N

Bitwise not

Shift left N places:
right fill with 0's
Shift right N places:
left fill with 0's

•include <stdio.h>
void main (void)
f

unsigned int ^ Zero = 0, X = 10, XII = 12;
printf (" \ n%u" , Ze ro) ;

Z e r o
.fl.O .0.0 .0.0 .0X0^0.0.0.0.0 .O.Q\

Z e r o I i. 1 - 1 . 1 - 1 - 1 . 1 - H i .1 A A . i A A A l

printf C"\n%u", X & XII) ;

x lO . 0 . 0. 0.0. 0.0.010.0 . 0 .0 A .0 A .0\

Xii \o.o.o .o.o.o.o.olo.o.o.o.i . 1 . oToi

X & XII 1 0 , 0 , 0 . 0 . 0 . 0 . 0 , 0 | 0 . 0 , 0 . 0 . 1 . 0 . 0 . 0 1

printf ("\n%uf\ X | XII);

X I 0 - 0 - 0 - 0 - 0 . 0 . 0 - 6 1 0 - 0 - 0 . 0 .
XII | 0 . 0 . 0 . 0.0.0. 0 . 0 I 0 . 0 . O . ~

XII Io .o.o .o . o .o .o . o l o . o .o _~.

1 . l

printf (" \n%\n", X A XII) ;

X lo .0 .0 .0 .o.o.o.o Io.o. o . o . l . 0 . i

x * 1 I o . o . o . o . o . o . o . o I o . o . o . o A - I , o . o I

X A XII I 0 .0 . 0 .0 . 0 .0 .0 .0 I 0 . 0 . 0 . 0 . 0. 1.1 .01

printf (f\n%u %u f \

operand
^0 1=0
0 | 1

operand
0

operand
o

.=0

operand
o

3: COMPONENTS 41

*=

i f h e operand on the left of an assignment is typically the name of a
variable or array element.

TJfhe term L-vabue (J or Lvalue j) is short for 'left value' and is used in
the jargon ^ with blatant disregard for the sanctity of English 4=* to
identify items that make sense only on the left of an assignment. In
general, [-values are names of storage locations ^ or expressions that
point to storage locations <& in which the content may be altered. We
meet pointers later.

operand operand n = m Assigns value of right
operand to the location
identified by the left
operand
(f 'puts value into n1 j)

If
operand

operand

4
integrali
L-vaLue J

+=
—5S

* =

operand

& =

A =

h

operand

)

•

n
n
n
n
n

i
i
i
i
i

+=
—ss

* =

/ =

% =

& =
A -

m
m
m
m
m ^<3^\

integral)

j
j
j
j
j

Short for n
n
n
n
n

Short for i
i
i
i
i

= n + m
= n - m
= n * m
» n / m
= n % m

= i & j
* i A j
- i 1 j
= i « j
= i » j

l\f you include one of the above assignments as a term in a Larger
expression the term contributes the value assigned. Thus in the expression:

4 + (n = a [i])

Tjfhe term (n = a [i]) contributes the value assigned to n. I f array
element a [i] contained 3, this 3 would be assigned to n, and the value
of (n = a [i]) would be 3.

Tjfhe value of the whole expression would therefore be 4 + 3 = 7.

42 ILLUSTRATING C

Ijncrementing operators are special assignment operators. Each may be
used as a prefix operator or postfix operator, the behaviour being
different in each case.

prefix

operand Short for i = i + 1
Short for i = i - i

i j f you include i++ as a term of a larger expression, the original value
of i is taken as the value of the term. Similarly for i—-.

operand

integral\ ' \ULpostfix

Similarly

Short for i = i + 1
Short for i s i - i

i j f you include ++i as a term of a larger expression, the incremented
value of i is taken as the value of the term. Similarly with «-i the
decremented value is taken as the value of the term.

Tjhe following program demonstrates the difference in result between
prefixing and postfixing the operator.

#include <stdio.h>
int main (void)
{

P
q = 2*++p;
printf("\n%i

}

P = 6 ;
q = 2 * p++;
prlntf (\n%i
return 0;

operand

twice the
incremented value

operand 3, m

, USEFUL IN THE PARAMETERS
OF A for LOOP

Evaluate & discard n=3, value
of expression is value of m

\typic ally an I
assignment

i j h e expression comprising the first operand is evaluated \ any side
effects being implemented J) and the value of the expression discarded.
Then the second operand is evaluated, its value being made the value
of the complete expression.

3: COMPONENTS 43

& *

TJfhe reference operators are concerned with pointers and structures.
These topics are introduced later. Here, for sake of completeness, are
definitions in mechanistic terms.

operand & a
^ "V

L-vaLue

prefix

1024

The address of a

& a (f the address of a J) is 1028

* operand * p The 'pointee' o f . . . (My terminology,
1 K ^ _ ^ — ^ analogous to 'appointee'}
: ^\£identifies

\ pointer \ [assume
variable g

NOTE
*&a SAYS THE SAME THING AS a
(J *& cancels itself out])

absolute addresses are seldom of interest, so /

p

*p d[the pointee of p ^ is 3.14

operand operand

(nominates a
structure

s.n

(points to a
structure

operand -> operand p->n

NOTE
p->n IS SHORT FOR (* p) . n

parentheses essential; precedence
would make * p . n imply * (p . n)

Member named n of
structure identified by s

-rn

•n
•o

I 2.7/8 |

CD s.n is 2.718A

Member named n of
the pointee of p <J[where
p points to a structure ^

44 ILLUSTRATING C

sizeof

l/irst the ternary operator; exceedingly useful. All three operands are
expressions, the first of which is integral.

operand ? operand : operand • max « ? a *b : c * d ;

sj/nly one of the last two
expressions is evaluated; the

expression) rcsu» becomes the value of
is implied) * h e e n h r e expression (f assigned
" to max in the example above D

double AbsVal (double x)
{

return x < 0 ? -x : x ;
f returns -x if x is negative^]

otherwise returns +x

f he 'cast' (} or 'typ>e cast' J) involves a prefix operator:

(type-name) operand • AbsVal ((double) (2* i))
v^—">v "V- -N^'* >v*- V N ^ \ ^ - -^y ^ ^ >s^~ \ ^ -V,,. s

nominates the type to which the value of the operand is to be
converted before use.

parentheses constitute a p>ostfix operator, establishing that the operand is
a function.

~ " • AbsVal (d)
• DOW (a , 3) ,^—fr function

these parentheses^ \^ *fvo]d) 4%—} with no
the compiler treats J ^ ^ ' (parameters

{comma as a separator;] > returning
\never as a sequencer \pointer to int

^rackets constitute a postfix operator for subscripting the array identified
by the operand.

operand [

s—^~ —N
f identifies an

{10, 20, 30};

[prefix operator, sizeof, is for discovering the number of storage units
J bytes D occupied by a particular object or by an object of particular
typ>e. This operator is used for dynamic storage (J Chapter 10 1) .

sizeof operand

sizeof (type-name)

p- sizeof a

sizeof (double)
sizeof (struct s)

sizeoF (char) has the A

value l

an object:*
" (variable, ,

array,
structure

or
union)'

3 : COMPONENTS 45

PREFIX* WFIX, POSTFIX OPERATORS

prefix

postfix

v, t nominate objects that are l-values %e.g. v or *p)).
In the case of i , the type of l-value is integral

a, b, m, n stand for expressions which reduce to numerical
values (J integral values in the case of m and n])

p nominates (Jor otherwise indicates]) a pointer variable
nominates a member of a structure or union.

confirmation
negation
address of
the pointee of (j[object pointed to by))
ones' complement (J i(300U00 -> 01110011 1)
logical NOT (J 1 if m is FALSE])
increment i before using its value
decrement i before using its value

<

J -
& &

* =

»=
«=

!m

—i

• a*b
• a/b
• m % n
• a + b
• a -b
• m &n
• m|n

• m«n
• m»n

• a<b
• a<=b
• a==b
• a!=b
• m&&n
• m||n

• v/=a
• i%= m
• v+=a

• v . w
• p->w

• i++
• i —

0
1
0

I
1
0

<b
0
1

1

0

vn
n 1

1

1
i
i

a
0
0

I

I

0
t
l

t
i 0

<t)

1
0
i

product m
quotient n
remainder nn<&
sum
difference ^
bitwise AND n
bitwise OR noAn
bitwise EXCLUSIVE OR
m shifted n positions lef t , right fill with 0's
m shifted n posns right, left fill type-dependent
evaluate and discard a, evaluate and retain b
1 if a greater than b . . . 0 otherwise
1 if a grtr than or equal to b...0 otherwise
1 if a less than b . . . 0 otherwise
1 if a less than or equal to b . . . 0 otherwise
1 if a equals b . . . 0 otherwise
1 if a is not equal to b . . . 0 otherwise
logical AND
logical OR
assign value a to object v
short f o r v = v * a
short for v = v / a
short for i = i%m
short for v = v + a
short for v = v -a
short for i = i&m
short for i = i|m
short for i = iAm
short for i = i » m
short for i = i « m
member w of structure v
short for (* p). w

use value of i , then increment
use value of i , then decrement

n-tt>

1
0

0
0

rolln r\i<t>
i

0

46 ILLUSTRATING C

OF OPERATORS

\fha\ does a + b % c mean? (a + b) % c or a + (b % c) ? The question can
be asked another way: which of + and % takes precedence? The following
table shows the precedence of all operators; those in the top row take
precedence over those in the second, and so on. In any one row, all
operators have equal precedence.

V/hat does a/b/c mean? (a / b) / c or a / (b / c) ? (t Try 8 /4 /2 both
ways and see the difference j) This question can be asked another way:
When successive operators have equal precedence, in which direction are
parentheses applied? Left to right or right to left? The required direction
is the associativity. The table shows by an arrow the direction of
associativity \ left to right or right to left j) at every precedence level.

l\n the placing of parentheses, precedence is relevant where successive
operators are found in different rows of the table; associativity is
relevant where successive operators are found in the same row of the
table.

HIGH (expr) [expr] ++

! ~ - + *

* / %

< <=

&

A

ternary operator

all the rest, infix A

= * = /= %= « =

LOW

Example: precedence

5 + -3 * 4 > -8 (value is /4
5 + (-3) * 4 > (-8) \(true A
5 + ((-3) * 4) > (-8)
(5 + ((-3) * 4)) > (-8)

[jjxample: associativity R to L

ex *= b = c += d /= e
a *= b = c += (d /= e)
a *= b = (c += (d /= e))
a *= (b = (c += (d /= e)))

3: COMPONENTS 47

COERCION & CASTS

\f/hen terms of an expression are of different type, the processor
'coerces' values to (a consistent type. Coercion may cause a short integer
to become long (jf 'promotion' J) or a long to become short (J 'demotion j)
according to the context of the expression. I f you wish to override
coercion you may include a cast to specify the precise promotion or
demotion required.

'LOWER'TO 'HIGHER'*, VICE VERSA

I f h e processor cannot directly obey the statement d = 2, where d is of
type double, because 2 is of 'lower' type than d ; you cannot store an
int in a location declared double. In obeying d = 2 the processor first
takes a copy of 2 and promotes the copy to double >5» as though you
had written 2.0 instead of 2. The promoted value is then assigned to d .

TJfhe converse, i = 2 .0 , where i is of type int, also involves conversion
before assignment is possible. But there can be trouble when a 'higher'
value is demoted to a 'lower'. With i = 2 .1 , for example, the .1 would be
lost and you would probably receive a warning. Some processors would
collapse on meeting i = 10000.

OVERRIDES COERCION

/hen assignment involves different types, the program coerces values to
the type of the receiving object. The same effect can be achieved by a
cast. For example, fd = (double) i'causes a copy of the content of i to
be promoted to type double and assigned to d . The expression i = (int) d
causes the converse by demotion.

(j |2£^^ A FORM OF ASSIGNMENT

ijnvoking a function with parameters is a form of assignment; parameters
of different type are coerced in the manner just described.

[Jor example, in AbsVal (- 3) (j where the parameter has been declared
of type double)) the -3 would be coerced to type double as though you
had written AbsVal (-3.0). Or you could avoid coercion by writing
AbsVal ((double)-3) . Coercion of parameters works because the processor
can see from the prototype declaration what types of arguments the
function expects.

#5£ SUFFIXES, NOT CASTS

lateral constants not of type int or double would be suffixed to specify
type. U (long or long double), F (f loat), U (unsigned) are defined on
rage 33 . Thus 2L represents the value 2 in a form suitable for storage
as a long int, whereas 2.0L represents the same value, but in a form
suitable for storage as a long double. Do not use casts with literal
constants.

48 ILLUSTRATING C

y[n general , any infix operator can cause type promotion if given
operands of different type: 3.141593/4 is a simple example involving the
division operator. In such a case the processor promotes the operand of
'lower' type (jf in this case 4 which is int]) to the 'higher' type (J in this
case that of 3.141593 which is double j).

TJfhe rules obeyed by the processor for maintaining the principle of
promotion to 'higher' type are as follows:

If or each operand; if it is:

• unsigned short int promote its value to signed int

• unsigned char promote its value to int with zero leFt fill

• signed char promote its value to int with sign extended

• char promote its value to int (form depends on impLementation)

i j h e n ask if the type of either operand is one of the following:

N

long double?

double ?

float ?

unsigned long int?

long int?

unsigned int ?

Y

Y

Y

Y

Y

Y

(produce result of type int / j f romote the value of the other
operand to the same type, then
produce a result of this same type.

3: COMPONENTS 49

Tjfhis chapter describes the control statements of C and
their use. These statements control the sequence of
execution within a function. Without them, execution starts at
the first statement after the heading of the function and
proceeds sequentially to the last.

(jontrol statements already introduced are: if, do, for,
break, return.

(jontrol statements are classified in this chapter as follows:

Tested loops while, do
Counted loops for
Escape break, continue, return
Selection if, switch
Jump goto

numerical value, typically
integer or pointer

LOOP UNTIL A CONDITION IS MET
while AND do

while

true

\

expression

(expression)

statement -

statement

I j f , on entry to the while loop, expression reduces to zero (J or null])
then statement is not executed at alL The test for continuation is at the
top.

/jt\p infinite loop may be
constructed by writing a non-zero
constant as the expression
(j[permanently true]). Escape from
an infinite loop using 'break!

while (1) or for (; ;)

infinite Loop

do statement while (expression) ;
numerical value,

) typically integer orA
pointer

statement

true
(expression) \ -

false

Tjfhe statement is executed at least once, the test for continuation being
at the bottom.

ijfested loops are useful when you do not know in advance how many
times (f if any D ex piece of program is to be executed. It may be
executed again and again until some goal is achieved « * such as the
difference between two quantities becoming very small. Whatever ihe goal,
it must be expressed as a logical value, true or false.

TJfhe 'while' loop is needed more often than 'do\ but an example in which
'do' is appropriate is given on Page 23.

52 ILLUSTRATING C

PREDETERMINED NUMBER OF TIMES
for

increment: after
executing body

test: omission
implies 1 - true

for{expression^ expression; expressions^ statement

expression/

true
expressiori2

\initiatizer (optional)

false

statement

expressions increment

Tjfhe initializer, expression/, is
executed at least once, and once
only, as you can see from the
flow chart.

\ /

TJfhe statement forming the body
of the loop is typically a
compound statement.

an infinite loop by omitting the test, thereby implying constantly true.

the comma operator to extend any or all expressions. For example:

for (a= l , b=l; x>y; i

GETTIHG OUT OF A LOOP BY break AND continue
RETURNING FROM A FUNCTION BY return

'break' takes you out of the present loop altogether; 'continue' takes you
to the end or the body of the loop, hence to the next execution of the
body >» if the control mechanism so requires. d(You can escape from a
complete nest of loops using the 'goto label1 statement but use of 'goto',
except for error recovery, is frowned upon, j)

while (expression) for (expr; expr; expr)

omit expression if function is
defined to return void

return expression

value of expression is
(returned to the invocation t

las though by assignment

\tor all serious programs, declare
rnainO' cxs type int, and include a
'return 0; The zero signifies normal
termination to the computer
environment.

4: CONTROL 53

COUNTED LOOPS

Consider the diagam on the right:
The shaded area is given by Ay
where:

Aij - i C XiYj - XjYi)
= -^C 2 X 3 - 2.5 x 1) = 1.75

4 I j f^x i>Y i

3

i i ; j
' d> 1 2 3 4

same formula may be used for
computing the area on the left. But this
area turns out to be negative""
Aij - i (XiYj - XjYi)

^ (3 x 2 . 5 - 5 x 4) = -6.25

^ 0 1 2 3 A 5
yr ie formula may be applied to sequential
sides of a polygon, and the triangular areas
summed to give the area shown here

Xi.Yl

lyut if the polygon is closed, as shown on the left,
the sum of the areas will be the area enclosed.

TJ*he bounded surface must be kept to the left of
each arrow: the sides of the figure should not cross
each other as in a figure of eight.

is a program by which to input coordinates of boundary points
and compute the area enclosed:

/* Area of a polygon * /
•include <stdio.h>
int main (void)

int n, j ;
double Area = 0.0, x [30] , y [30] ;
printf ("\n\nNumber of vertices? : ") ;
scanf ("%i", &n) ;
for (j = 0; j < n; ++j)
f

printf ("Coords of point %i ? : ", j + l);
scanf (" %f %f ", & x[j], & Y[j]);

for (j=0; j<n; ++i)
Area += <z).5*(x[j] * y [(l + j) % n] - x [(l+ j)%n]*y [j]) ;

printf ("\nArea is %.2lf , Area);
return 0;

Tjfhe expression
(l+ j)%n gives
values as shown
by the little table

Number of vertices:
Coords of point 1
Coords of point 2
Coords of point 3
Coords of point

54 ILLUSTRATING C

if (expression) statement! else statement2

(numerical (typically integer or \ /this statement executed \ (this statement, if present,
(pointer type). Hon-zero signifies} (when expression signifies"Vexecuted when expression

true, zero signifies false jJ ^ ^ . ^ true ^ ^ ^ y - ^ ^ - v signifies false

true false

expression
false

statementl

expression

statementl statement2

discussion on nesting and other features of if ...else on pp 12 & 13.

/* Areas of shapes */
#include <stdio.h>
#include <math.h>
int main (vo id)

double Pi = 3.141593;
double s, Area, a, b, c, d ;
char Letter;
int Ok = 1;
printf ("\nR, T, C ?\n") ;
scanf("%c", & Letter);
if (Letter == 'R') {

printf ("b & d please\n") ;
scanf("%f %f r\ &b, &d) ;
Area = b * d ;

else
if (Letter == 'T') {

printf ("a, b & c please\n"
scanf("%f %f %f, &a, &b,
s = (a + b + c) / 2;
Area = sqrt (s* (s -a)* (s -L ,

else
if (Letter == 'C') {

printf ("d please\n") ;
scanfC"%f ", &d) ;
Area = Pi * d * d / 4 ;

else
Ok = 0;

if (Ok)
printf ("Area is %6.2f", Area) ;

else
printf ("Try again") ;

return 0;

i jhe example illustrates nested if's;
not always the best way to express
program logic.

R, T, C ?
R
b & d p l e a s e
3 .5 2
Area i s 7 .00

4 : CONTROL 55

TABLE-CONTROLLED LOGIC,
AVOIDING CLUMSINESS OF if... else

/.programmers spend a lot of time writing input routines. Few are asked
to input and decode Roman numbers like MCMXCII, but this presents no
particular difficulty if you use a symbol-state table. This approach is tidier
than logic based on if and else.

4\ssume Roman numerals to be composed of the following elements,
never more than one from each consecutive list:

'thousands)

M=1000
MM=2000
MMM=3000
etc.

.hundreds

C=100

CC=200

CCC=300

CD=400

D=500

DC=600

DCC=700

DCCC=800

L=50

X=10 LX=60

XX=20 LXX=70

XXX=30 LXXX=80

XL=40 XC=90

V=5

1=1 VI=6

11=2 VII=7

111=3 VIII=8

IV=4 IX=9

IJn fact the Romans felt less constrained. I I I I was common. Some
monuments have inscriptions of numbers starting with more than twenty Cs.

Tjfhe logic

[starting \
state J

\ t£>00
^-^ 0i

02
03
04

LU 05
< 06

08
09
10
11
12
13
14
15

of the program is contained in the

M
1000: 00

800: 05

D
500: 01

300: 05

C
100: 03
100: 02
100: 04
100: 04
100: 05

80:10

\ following symbol-state

SYMBOL
L

50:07
50:07
50:07
50:07
50:07
50:07
30:10

X
10:06
10:06
10:06
10:06
10:06
10:06
10:09
10:08
10:09
10: 10

8 : 1 5

V
5 : 1 2
5 : 1 2
5 : 1 2
5 : 1 2
5 : 1 2
5 : 1 2
5 : 1 2
5 : 1 2
5 : 1 2
5 : 1 2
5 : 1 2
3 : 1 5

table:

I
1 s 11
1 s 11
1 r 11

1 s 11
1 5 11
1 S 11
1 S 11
1 S 11
1 r 1 1
1 2 11
1 s 11
1:14
l : 13
l : 14
l : 15

error

TJfake the Roman number QX as an example. Begin with a value of
zero. You are in state 00 (f where the arrow is J). Look down from
symbol C and find 100:03 which says 'Add 100 to the value and change
state to 03.' So add 100 to z.ero and move the arrow to 03. Now look
down from symbol I and find 1:11. So add 1 to the value (J 100 + l =
101)) and move the arrow to state 11. Finally, look down from symbol X
and find 8:15. So add 8 to the value (| 101 + 8 = 109]) and move the
arrow to state 15, a row of empty cells.

TJfhere are no more Roman digits, so QX decodes as 109. Experiment with
MCMXCII cxnd you should get 1992. Experiment with MDDI and you should
encounter an empty cell which means an error of formation.

56 ILLUSTRATING C

if he program to implement this method of decoding is short and simple
because the logic**the difficult part•» is embodied in the table.

ijfwo pieces of information are packed into each element of the table.
To unravel, divide by 100 and use the quotient as the contribution to the
final value and the remainder to give the next state. Thus 50001 gives a
contribution of 5000i / 100 = 500 (f integer division D and a new state of
50001 % i00 = l (J remainder when 50001 is divided by 100]). The array
has to be declared as 'long' on installations that offer only 16 bits for an
'int'.

/* Roman Numerals */
•include <stdio.h>
char Symbol [] = f
long Table [16] [8] =

i

} ;

int
r
i

}

{ 100000, 50001,
(0, 0,
{ 0, 0,
f 80005, 30005,
f 0, 0,
f 0, 0,
f 0, 0,
f 0, 0,
(0, 0,
f 0, 0,
{ 0, 0,
f 0, 0,
{ 0, 0,
{ 0, 0,
{ 0, 0,
{ 0, 0,

main (void)

long Entry = 1,
int Column,
char Ch;
printf ("\nEnter a

10003,
10002,
10004,
10004,
10005,

0,
8010,

0,
0,
0,
0,
0,
0,
0,
0,
0,

Number
Row =

v» , L

5007,
5007,
5007,
5007,
5007,
5007,
3010,

0,
0,
0,
0,
0,
0,
0,
0,
0,

= 0;
0;

number\n");
while ((Ch = getcharO) != \n

• A ,

1006,
1006^
1006,
1006,
1006,
1006,
1009,
1008,
1009,
1010,

0,
815,

0,
0,
0,
0,

&&

for (Column = 0; Column < 7 && Ch

Entry = Table [Row] |[Column];
Number += Entry / 100; as
Row = Entry

•c /r~ L *\

% 100; —̂—̂ x

—t <

^—v^-i
} select

ir (Entry;
printf ("=%i in Arabics", Number)

printf ("ViError");
printf ("\nEnd of
return 0;

run);

V. 'I' };

512,
512,
512,
512,
512,
512,
512,
512,
512,
512,
512,
315,

0,
0,
0,
0,

Entry)

111,
HI,
111,
111.
Il l ,
111,
111,
111,
111,
111,
111,

114,
113,
114,
115,

0

stops

- N ^

0
0
0
0
0
0
0
0
0 !
0
0 ;
0
0 ;
0
0

• f

• f

f

0 }

"^s^^—V^ "N^ V̂ ^^~X

Looping if Entry picks)
up zero (false) ***

!* Symbol [Column] ; ++Column)

accumulate

^ ^ - ^
enter
^^ ^

s—^^—s

*- >^^><^y
Number)

• " • ^ — ^ .

next row of table)

9 r*~~
Enter a number
MCMXCII
- 1992 in Arabics
End of run)

—N^^^^^^^—.——^^

4: CONTROL 57

SELECTION STATEMENT

switch (expression) statement

integral value (coerced if necessary to int or
unsigned int) is compared with the value of 4^

each case expression in the block. Control
f jumps to the statement following the matching^

value. If there is no match, control jumps tqj
the statement following default:

^^ typically a { block } .
containing case labels and\
\ a single default: label

xase expressionjy statement

more than]
default -

per switch -

vay involve constants y
evaluated at compile time. «

>'Unique value essential after]
{every case in the same block

/this statement is next to be)
executed if value of the ,

\case expression matches^
[value of the switch j

, expression

Statement <^d^xecuted if no match. (Undefined J
^ * " * * ^behaviour if there is neither)

< match nor default)

}'break statement typically terminates each case

printf ("How may legs did it have?");
scanf("%i", & Legs);
switch (Legs)

\ order %

case 8: printf ("A spider, perhaps?"); break;
case 2: printf ("A double-glazing sales person11); break;

" • • ise 5: case l: printf (Thai's odd!11); break;
iniP ("Probably a mouse"); b r e a k ; ^ ^ i ^ / -
•intf (Definitely a bug"); break; V ^ > / i
intf ("Could be dangerous"); (case

f no K case 3
particular) case 4

case 6
default

J y'""" ~~***^~ "V^ "V" " V ~**~~

breaks take you here

case
prii
printf
printf

multiple

TJhe switch statement is useful wherever the logic demands selection of
one case from a group of several. The Areas program could be
improved using rswitch' in place o f ' i f ' as shown below:

[switch (Letter) f

case 'R': case V:
printf ("b & d please\n");
scanf ("%lf %lf', & b, & d);
Area = b * d;
break; ^ ^ ^ i terminates ,

l-r' 'L'

case T: case t :

58 ILLUSTRATING C

l\f you omit 'break' after the statements belonging to one particular case,
control simply falls through to the next as illustrated by the following
program which displays all twelve verses of a tedious Christmas carol.

/ * 12 days of Christmas * /
int main(void)
{

int i , j ;
char Ord[] = { s, t , n, d , r, d , t , h j ;

printf ("%i%c%c " , i , Ord [j] , t) rd [j+ l]) ;
printf ("day of Christmas my true love sent to me,");
if (i « i) printf C"\nA ") ;
switch (i)

printf ("\nTwelve drummers drumming,");
printf ("\n'leven pipers piping,");
printf ("\nTen maids a-milking,") ;
printf ("\nNine lords a-leaping,");
printf ("\nEight ladies dancing,");
printf ("\nSeven swans a-swimming,");
printf ("\nSix geese a-laying,");
printf f \nFive 6O-OLD rings,");
printf ("\nFour calling birds,");
printf ("\nThree French hens,");
printf ("\nTwo-oo turtle doves,");

"\nAnd a ") ;
printf ("part ri-i-idge in a pear treeee.");

i

return 0;

case
case
case
case
case
case
case
case
case
case
case
printf
case

12
11:
10
9 :
8 :
7 :
6 :
5 :
4 :
3 :
2 :
(
l :

Rested switch statements are useful for implementing the logic contained
in symbol-state tables. The outer switch is given a case for each state
(J row]) of the table. The logic in each of these cases comprises an
inner switch having a case for each symbol (j[column j) of the table.

RECOVERIHG FROM CHAOS

4p\n error condition may be drastic enough to warrant a jump out of the
mess. ^—^—^—^_

^ a label marking a
^statement in the same\

goto name M
(matching) ^

!^iJ : statement
of labels do not clash with names of other entities.

4: CONTROL 59

LOTS OF LOOPS: THIS PROGRAM IS FOR THE
READER WHO HAS A LITTLE MATHEMATICS

ij*he power cables a and b
look as if they are running
uncomfortably close to one
another. What is the closest
distance between them?

f his would be an awkward
problem without vector algebra:
here are enough of the
principles to solve it.

4f\ vector "v is written as:
v =

where v#, vi, V2 are its#, i, 2 a
projections in the directions depicted. The length (J modulus ^ of v" is:

Ivl =
l^ iv ide "v by_Jts own length and you have a unit long vector in the same
direction as v: w* -* Vi -* Vo +>

171 ^ ^ l v l Ivl
Ijfhe scalar (J or dot j) product, ^ .̂ v, is given by
w^v^ + wivi + W2V2. This expression represents the
product of the length of one vector and the projected
length of the other upon it. Another way to look at it is:

Jw| Iv| CO38

r r tTjhe vector (j(or cross]) product, ~v x w is
given by this determinant. It is a vector
having a direction normal both to 'v and to w

Tjfhat's a.11 we need of vector algebra for this problem. In the sketch
above, ~a and £T can be expressed:

4)r+ (l6-8)j*+ (l7-10)jT = 5f+8j^+ i t
-6)r+ (ii-3)r+ (i5-5)iT = 4r+ 8T

a = (9-4/T+ (16-8J

i jheir cross product, a x b, is a vector normal to a and b:

IT* 8t

parallel

a x b =
J
8
8

t
7

is length is //(24)2 + (-22)2 + (8)2 = 33.53

Jo a unit vector, "ĉ connecting any point on T̂ to any point on ID is
-f- 33.53

0.72?- j * + 0.241T

Tjake a vector, cT, connecting any point on oT to any point on IT. Here
one; it connects the tip of cT to the tip of IT:

a = = If - 5f - it

ILLUSTRATING C

(project this onto the unit vector to give the shortest distance between
the cables:

d = (t)x(0.72) + (-5) x (-0.66) + (-2) x (0.24) = 3.52 approximately

I j f the cables run parallel, special action is needed as shown in the 'else'
clause in the program.

/ * Power cables; are they too close? */
#include <stdio.h> ^s-^~^~~^~\
#include <math.h> -*^jf^"e need sqrtj
int main (void) ^^^-—r-*

int j , k=l, m=2;
char Cable[] = {'A', 'B'};
double Coord [12], a[3], b[3], c[3], u[3];
double Clearance=0.0, Proj=0.0, asq=0.0, csq=0.0, usq=0.0;
for (j = 0; j <12;

printf ("\nCable %c\n", Cable [k=l-k]);
if C'(j%3))

printf ("End % i : x, y, z coords: " , m=3-m);
scanf ("%Lf", & Coord [j]) ; ^ x _ ^ - ^

W ~̂̂ alternating)
for
{

a[j] = Coord [3 + j] - Coord [j] ;
b[j] = Coord [9 + j] - Coord [6 + j] ;
c [j] = Coord [9 + j] - Coord [3 + j] ;

u[0] = a[l] * b[2] - b[l] * a[2];
u[l] = a[2] * b[0] - a[0] * b[2];
u[2] = a[0] * b[l] - b[0] *
for (j = 0; j<3;

usq̂ += u[j] * u[j]:
if (usq > 0.0) ^ r^ r -3 non-parallel

for (j = 0; j<3 ;
csq. += c[j] * u [j] ;

csq /= sqrt tusq);
ClearanceJ^(csq < 0.0) ? -csq:

} ^^^paralLei)
else '<^rm^cablesj'

for (j = 0; j<3; ++j)
{

asq += a[j] * a [j] ;
csq += c[j] * c [j] ;
Proj += a[j] * c [j] ;

-= Proj * Proj / asq;

Cable A
End 1: x,y,z coords: 4 8 10
End 2: x,y,z coords: 9 16 17
Cable B
End 1: x,y,z coords: 6 3 5
End 2: x,y,z coords: 10 11 15
Clearance between A & B is 3.521

Clearance = (csq > 0) ? sqrt(csq) : 0.0;

printf ("\nClearance between A & B is %.2Lf\n", Clearance);
return 0;

4: CONTROL 61

AN INGENIOUS ALGORITHM

Tjfhe sorting method called Quicksort was devised by Prof. C. A. R. Hoare.
The version described here is a bit different from the original but serves
to explain the essential principles of the method.

TJake some letters to sort:

G B L I C N M H

an arrow at either end of the list and prepare to move j towards i .
j indicates a 'bigger' letter than i does, move j another step towards i .

G B L I C N M H

ow j indicates a smaller letter than i does. So swop the two letters

icated, and swop the arrows i and j as well:

C B L I G N M H

5 ̂ — t i
(jontinue moving j towards i <j[which now means stepping rightwards
instead of leftwards]). I f j indicates a smaller letter than i does, move j
another step towards i :

C B L I G N M H

ow j indicates a bigger letter than i does. So swop letters, arrows,
direction and condition exactly as before:

C B G I L N M H

4|nd s o on> swopping as necessary, unttl j reaches i :

C B 6 I L N M H

4\t which stage it is true to say that every letter to the left of i is at
least as small as the letter indicated: every letter to the right of i is at
least as big. In other words the letter indicated has found its resting
place. The letters to the left of i have not, however, been sorted, nor
have those to the right of i . But having 'sorted' one letter, and split the
group into two, it remains only to sort each sub-group, starting out in
each case in the manner described in detail above.

C B G I L N M H

62 ILLUSTRATING C

4 \ tidy way to sort is to point to the entities (j(such as personnel
records j) to be sorted, then rearrange the pointers. C language has
special facilities for handling pointers but these must wait until Chapter 10;
here we use integers to introduce the concept.

Type some letters & press Return/
G B L I C N M H

BCGHILMN

_ i the program as shown above.
Try 'ut tensio sic vis/

&1
til

3--*H
4--->M
5--*C5]
6 --K6]
7 - -*f 7],

M

w
&]
L3]

M
C5]
M
C7]

1 -
4 -

7^
3 ^
2 '
G*
5 - Si-71

/* QSORT: Quicksort; home-made pointers */
•include <stdio.h>
char Letters [100] ; <^^g^t>al arrays
int Pointers [100] ;

(before)
I sorting \

void Qsort (int i , int j)
otherwise return without

doing anythingif (i < j)

int First =j Last = j , Way = l , Temp;
while (i != j)

if (Way == Letters [Pointers [i]] > Letters [Pointers [j]])
f

Temp = Pointers [i] ;
Pointers[i] = Pointers [j] ;
Pointers [j] = Temp;

Temp;
Way = ! Way;

statement goes:
JV-'> JV+1* JV-'

!Way - Way;

Qsort (First, i - i) ;
Qsort (i+1, Last);

econdLy sort these

'"X- -S^ \ ^ -s

thirdly sort these

int main (vo id)

int n, k;
printf ("\nType some letters and press ReturnW);
for (n=0; (Letters [n] = getcharO) != V ; ++n)

Pointers [n] = n;

Qsort (0, n - l) ;

for (k = 0; k<n ; ++k)
printf r % c " , Letters [Pointers [k]]) ;

return 0 ;

4: CONTROL 63

We-program 'Areas of shapes' using the logic of a switch statement
in place of if.. .then.. .else. You should find the result simpler and
tidier than the program on page 55.

i^/rite a function, using a symbol-state table, to read an octal
number from the keyboard, converting it to a decimal integer (} of
type long D . Allow a preceding + or - sign. For example, the
program should read -74 and get the result -50.

Your state table should have four columns. These are: [0] to deal
with the leading + or - , [l] to deal with any digit from 0 to 7, [2]
to deal with a space character, [3] to deal with any other
character (J an error J). The value in each cell should comprise a
label (f for use in an associated 'switch' statement]) and the number
of the next 'state', or row. The 'case' associated with valid digits
should multiply the accumulating result by the number base, 8, then
add the current digit.

Write a test-bed program to read octal numbers from the
keyboard and display their decimal equivalents on the screen.

Ijjxtend your octal number program by making it read numbers to
any base from 2 to 32. The digits for base 32 should be:
0123456789ABCDEF6HIJKLMNOPQRSTUV (f only as far as F for base 16
etc.]). Hint: Store these as characters in an array; when
accumulating a number, add the array subscript to the accumulation.

Let the program treat the first number it reads as a number base.
Make it treat subsequent entries as numbers expressed to that base.

TJhe Quicksort algorithm 'sorts' a single item, then calls itself to
deal with those above and those below. You can apply similar logic
to the bubble sort described on Page 19. Simply 'bubble' one
number to the top of the list, then call the bubble function
recursively to deal with the list below.

Write a recursive bubble sort function. To test it, use the program
on Page 63, first replacing the Quicksort function.

64 ILLUSTRATING C

TMfhis chapter describes Hie organization of a C program
in terms of translation units and files.

4 \ C program is turned into an executable program by a
processor comprising a preprocessor, a compiler, a linker.

TJfhe preprocessor is described in detail; its logical passes,
the use of directives, the composition of a macro, and the
use of macros for textual substitution and conditional
preprocessing.

Qtorage class is explained; the use of storage class
specifiers to establish the scope of an object or function,
and whether objects and their contents evaporate or not
when control moves on. The significance of storage class
specifiers in different contexts (£ outside and inside function
definitions]) is carefully explained

TJhe chapter ends with an explanation of name spacer the
contexts in which different entities given the same name
would clash.

PREPROCESSOR - COMPILER - LINKER

4 \ C program may be all in one file or shared among several. The
contents of each file is called a translation unit and comprises a set of
directives, declarations and function definitions.

#define PI 3.14
#include <math.h>
int i = 0, j ;
int MyFun (float f)
f

declarations
statements

int YrFun (double d)

declarations
statements

•include <math.h>
int MyFun (float) ;
int YrFun (double) ;
extern int i ;

int main (void)
{

declarations
statements

/J program of i
(two translation j
> units, MYFILEl /
\and MYFILE2)

MYFILEl MYFILE2

Although some modern processors prepare a C program for execution
in a single 'pass', the logical process or preparation is best described in
terms of multiple passes made by three distinct parts of the processor;

preprocessor
compiler
linker

TJhe C preprocessor resembles a word processor; it simplifies and
rationalizes spacing, removes comments, copies nominated files into the
program, substitutes pieces of text. At the end of this stage, translation
units contain nothing but C language.

TJfhe compiler translates C language into code the computer can obey
directly. For each 'text file' of C language the compiler generates a
corresponding 'object file' of executable code. Cross references between
functions and between files are left open at this stage.

l / h e linker deals with cross references. I t copies the executable code of
invoked library routines into the program, links all invocations to the
functions invoked, cross refers local and global variables. The linkage of
variables depends on their 'storage class', a subject described in detail
below.

TJ*he final result is an 'executable file.'

66 ILLUSTRATING C

Tjfhe preprocessor works with tokens.
These are the indivisible atoms of a C
program. All forms of token except
punctuator have been introduced in
other contexts; punctuator is defined
below.

punctuator []

token

trigraph

SIX LOGICAL

keyword
name
constant
string
operator
punctuator

/

»

)
J
<
>

'PASSES

• if
• A_4
• 01
• "abc11

• +=

#
\
A

[

]
1

{
}

TJ*he C processor does the following things, effectively in the order listed
below:

It replaces each trigraph with code for the single character it represents.
Thus ??< is everywhere replaced by a left brace. (J Trigraphs enable
users of equipment based on a seven-bit character code to implement
ANSI C.̂)

Mind the\
rapist

Mind therapist
VJherever \ is followed by a new
line the preprocessor removes
both the \ and the new-line
character, thereby 'splicing' successive lines. The need fo r \ in this context
is explained later.

I t rearranges white space such that each token is minimally separated
f rom its neighbours. I t replaces each comment by a single space.

I t obeys each directive in turn. A directive begins with # as the first
non-blank character on a new line. The directives (j[all defined below j)
are concerned with textual substitution by macro. Macros are described
in subsequent pages.

I t replaces escape sequences in character constants and quoted strings
with equivalent single codes. For example, \ n (j[as seen in ' \ n ' or in
printf C'\nFinish") j), gets replaced with the code for new-line generation.
Escape sequences are summarized on Page 197.

I t concatenates adjacent strings, removing any space between them and
removing redundant quotation marks:

"inks Pi" " rates" t ^ > "Methinks Pirates"

5: ORGANIZATION 67

define #undef

4 \ name in association with a useful value, or useful piece of program,
is called a macro.

i jn this program (J which reads the
radius of a circle from the keyboard
and displays its area on screen]) PI is
a constant used in much the same way
as an initialized variable. Before the
compiler ever sees PI, however, the
preprocessor meets #define PI 3.14 and
substitutes 3.14 for each occurrence of

except in the following circumstances: j r ^ ^ ,r ° — 'replaced by

not if part of a longer token such as PIPE 7 r e J u r n H
not inside quoted strings such as "Ratio Pi"
not in comments (jf all of which have been removed at this stage J).

#define PI 3.14
#define XXX return 0 ;
int main (void)
f

float r;
scanf ("%fM, &r) ;
printf ("%f", P I * r * r) ;
XXX

replaced by
3.14

£ ^ the same holds for '#define XXX return 0; except that three
tokens (J return and 0 and ; j) are substituted for each single occurrence
of XXX. In general, the text for substitution may be of any length; it
terminates at the end of the line. (J So what if the cursor reaches the
edge of the screen before you have finished typing the text for
substitution? Press \ followed immediately by Return. The cursor jumps to
the next line and you continue typing, but the preprocessor 'splices' what
you type to the previous line as illustrated earlier.])

4\s explained above, #define PI 3.14 causes 3.14 to be substituted for
each occurrence of PI throughout the file *& except for the three
circumstances noted. Here is a fourth exception; substitution ceases when
the preprocessor meets #undef PI. From that point onwards no further
substitutions are made for PI.

no space here

#define ABS(x) : (x))2f our macro may have arguments.
These are names in parentheses
following the macro's name and the opening parenthesis.

4f\fter the definition of ABS(X) the preprocessor might meet a term in an
expression such as ABS(a) for which it would substitute: ((a) <0 ? - (a): (a)).
This expression returns the absolute (i.e. positive) value of the number
held in variable a.

Vfhy all the parentheses? Wouldn't (x < 0) ? - x : x suffice? No. Try
with ABS(3-7) which would become (3-7) < 0 ? -3-7 : 3-7 and return
-\0 instead of 4. Put parentheses around the text and around every
argument within it.

y/atch out for side effects! ABS (i++) would expand into
((j++) < 0 ? -(i++) : (i++)) causing i to be incremented twice on

each execution. (i++ is equivalent to i = i + 1).

G8 ILLUSTRATING C

RE-SCAHS FOR UNMATCHED NAMES

Macros may invoke each other:

#define ABS (X) ((X) < 0 ? -(X) : (X))
#define NEAR_EQL((A),(B)) (ABS((A)-(B))>(TOL) ? 0 : 1) ;
#define TOL 0.00i

TJfhe NEAR_EQL macro returns 1 (fr true)) if its arguments have nearly
equal values, otherwise 0 (j[false J). The criterion for 'nearly' is set by
the value associated with TOL. For the setting shown, NEAR_EQL (1.2345,
1.2349) would return \(^true J .

Ij^ that invoke one another may be arranged in any order; the
preprocessor re-scans to satisfy unmatched names (J notice that ABS
precedes NEAR_EQL but TOL follows]). However, if one macro involves
others, all participant macros must be defined ahead of any context
wanting to use it. For example, if NEAR_EQL is to be used in main () then
ABS, TOL and NEAR_EQL must all be defined ahead of the definition of
main ().

operators: # 'string-izer'
paster

•define PLURAL(P) printf (#P"s") ;

l\f # is placed in front of an argument inside the substitution text, the
preprocessor takes the argument literally, enclosing it in quotes. In this
example, if the preprocessor
subsequently met PLURAL (Cat)
it would expand it to
printf ("Cat" V) ;

Adjacent strings are always concatenated, and contiguous »" removed,
so the effect of PLURAL (Cat) would be printf ("Cats");

Tjfhe \ and " in the actual argument are replaced by \ \ and \ "
respectively, and so should be treated literally. PLURAL (Cat\nip) is
replaced by printf ("Cat\nip") without an accident over the \n. But be
careful! My system goes berserk if it meets leading or trailing \ or
unbalanced " ({ \Cat, Cat\, C"at *

#define OYEZ(A, B) printf ("A##B") ;
TJfhe preprocessor's 'operator',
##, concatenates arguments. I f
the preprocessor subsequently
met OYEZ (Aster, ix) it
would substitute 'printf ("Asterix");' But here we are in dangerous
territory; see Kernighan & Ritchie and the manuals for your particular
system (| or experiment boldly)) „

5: ORGANIZATION 69

include

/ j jere is a home-made header file.
Name it MYHEAD.H

4/ou may start a program as
below. Its first line then gets
replaced by the contents of the

#define
int Print
int Post
#define
int Pick

PI
(

3.14
char
float,

ABS(X)
(void

c, int i
double

((X)<0 ?
) ;

CMYHI

);
-(X) : (X))

#include < stdio.h >
#include "MYHEAD.H"
int main (void)
{

standard header file named stdio.h. Similarly, its
second line gets replaced by the contents of the
header file named MYHEAD.H

__ i^n general, the #include line tells the preprocessor
to replace that line with the entire contents of the file nominated. I f the
name is in pointed brackets it means the file may be found in the usual
directory for standard header files; if the name is in quotes it means
the header file is in the same directory as the program being processed
or in some other nominated directory.

^ organization of files and directories, and the limitations of allowable
syntax in names of files, depends on your implementation. See local
manuals for the precise implications of <name> and "name".

4 \ header file is typically an ordinary text file that contains a selection
of the following in any order*
• definitions of constants (J #define PI 3.14 1)
• definitions of macros (jj[#define ABS(x) ((x) < 0 ? - (x) : (x)) ^
• function prototypes (f int Pick (v o i d) ; D
• #include lines nominating similar files (j[#include "YRHEAD.H" J)

Standard header files, such as stdioh and math.h, are available at every C
installation. When your program invokes a standard function (for example
printf (" H i ") ;) you have to know which standard header file contains its
prototype. In the case of printf() it is stdioJi. To make printf() available,
place #include <stdio.h> somewhere ahead of the function in which printf (" H i ")
occurs. The usual place is ahead of all functions defined in the file.

j j e - m a d e header files (j(such as MYHEAD.H]) are useful for keeping a
program tidy as it grows. Defining PI once only is better than defining it
separately in each rile. More imoortantly, an ANSI C processor will compile an
invocation (Jf such as k = Pick () ^ only if it knows what type of value (f int,
float, double, etc ^ the function should return, and what type each argument
should take. The processor knows these facts if it has already met your
definition of Pick() and compiled it. But what if the processor met k = Pick()
before having seen and compiled the definition? The answer is that you
should already have shown the processor a prototype of Pick(): a prototype
contains all information necessary for compiling the invocation k = Pick().

y f tidiest way to show prototypes is to make a header file for them
and include that header file (J #include "MYHEAD.H" j). Then you need not
worry whether the processor meets an invocation before having compiled
the function invoked.

ILLUSTRATING C

l/ou can make the preprocessor deal
with some sequences of lines in your
input file and ignore others according to
the conditions encountered during
processing & such as including a file
only if it is not already included.

f diagram shows the required
arrangement of directives, expressions
and lines to achieve conditional
preprocessing.

TJhe composition of expression is
restricted to simple constants; don't
include sizeof or a cast or an
enumerated constant.

ijfhe preprocessor will deal with no more than one sequence of lines,
and that's the first sequence encountered whose associated expression
evaluates as non-zero ({true]). #elif means 'else if'. If all the #if and
#elif expressions evaluate as zero (j[false 2) the preprocessor deals with the
sequence following #else £^ but in the absence of an #else sequence the
preprocessor does nothing. In every case the preprocessor ends by
jumping to the line after the obligatory #endif.

none ort

more #elif
sequences

none or
one #else
sequence

#if expression

sequence of lines

*#elif expression

\ sequence of lines

#else

sequence of lines

#endif

Logical OR
A* -

#if (.'defined Pi) || (.'defined e)
•define Pi 3.141593 r ^ ~ ^ ^
•define e 2.718 \ set both

#endif leither unset

44n expression may involve the
special 'operator' exclusive to the
preprocessor. It has the form:

#if .'defined MYTAG
#define MYTAG

put contents of MYHEAD.H here;
they will be processed only once

#endif

defined (name)
defined name

or

#if .'defined YRTAG
•include
#define
#endif

"YRHEAD.H"
YRTAG

and takes the value lL ({i.e. unity
expressed as a long int p if true;
01 if false. True signifies that the
processor has already met the
definition of name in the forni:

define name text ^ *

TJfhe preprocessor coerces all its
Boolean values to long int (j(lL, 01)).

4*\nsi C offers two directives, #ifdef and #ifndef, which you may use in
place of #if in macros such as those illustrated above:

#ifdef name is short for #if defined name
#ifndef name is short for #if .'defined name

TJfhere are no corresponding short cuts to use with #elif.

5: ORGANIZATION 71

PREPROCESSOR

Tjfhe following diagram summarizes the syntax of a preprocessor
directive. Each directive must be on a line of its own (j(possibly extended
by \]) preceding the program it is to modify.

#define name replacement

•define name(name) replacement

#undef name pff something
currently definea

• inc lude " file %4r^ ftLe name as

^-^ ^ allowed by .
• include < file > (operating system)

#l ine constant * ^ file*

number
—^—— -̂̂

#if expression -^preface

conditional, integer J

#elif expression preface

#ifdef name >orefacey

#ifndef name preface

#endif

• #define PI 3.14

• #define FAHR(cels) \
C () (9Mcels)/(5))

• #undef FAHR

• #include "MYFILHED"

• #include < stdio.h >

• #line 22 MYFILE
(diagnosticsj

• #if .'defined MyTag
#define MyTag

• #elif .'defined HerTag
#define HerTag

• #ifdef YourTag
#undef YourTag

• #ifndef MyTag
#define MyTag

• #endif

where

replacement token

(replacement)

f 'string-izer'
fa parameter name preceded by # is expanded to]
>a quoted string - the parameter being replaced

by the actual argument

72 ILLUSTRATING C

TJfhe simple declarations
and optionally supply an

int i = 6, j ;
float f;

THE BEHAVIOUR OF OBJECTS
IN DIFFERENT CONTEXTS

illustrated earlier declare the type of a variable,
initial value. Such definitions may be preceded

by a qualifier or storage class
specifier or both:

qualifier

specifier

const
volatile

auto
register
static
extern

const float pi = 3.1416;

4\ny declaration qualified by const
should be initialized « because the
processor refuses to permit a
subsequent assignment to the object,
either directly or indirectly; const
means it is constant.

b
jfhe volatile qualifier has to do with 'optimizing compilers'; its precise

behaviour depends on the installation, so consult local manuals about its
purpose and possible usefulness.

S to rage class specifiers say whether an
object should be remembered or allowed
to evaporate when control leaves the
current function, whether a global object
is global to one file or all files, whether a
function is accessible from all files or just
one, and so on.

auto int i

register int

static float

extern int

= 6

k

a ,

P.

* j ;

88 3 ,

b, c

1;

TThe significance of each storage class specifier depends on the context
or the declaration. This subject is covered in detail in following pages.
Here is a summary, much simplified:

m ,_eans the object evaporates when control leaves the
current block. Objects declared inside blocks are auto by
default, so auto declarations are seldom used

tj^eans auto, plus a hint to the processor that it may
store the variable in a fast register (J at the cost of being
refused access to it via an address j).

Qutside all functions: 'static' means the object or function
can be accessed within the current file only

Cstatic) U^ # block; 'static' means the object and its contents are to
*J^S~^ be preserved when control leaves the current block

(ex\ern ijfells the processor to look for a full definition elsewhere
outside the current block or current file -5* and extend its
scope to the current block or file.

5: ORGANIZATION 73

RELEVANT SPECIFIERS: static & extern

S^/utside' means outside all function definitions.

v^/bjects declared outside function definitions are maintained throughout
the program's run. They are said to be 'global/ Global objects provide a
useful medium of communication between functions.

Tjfhe 'scope' of an object is the region of program in which statements
may refer to that object or change the contents of that object. This
assumes the object is not hidden: visibility' is explained later.

file

TJfhe scope of an object defined without a
specifier runs from the point of declaration
to the end of the same file.

file

TJfhe scope of such an object may be
extended to other files, or another region
of the same file, by extern declaration. Each
extra scope runs from the point of extern
declaration to the end of that file. \^

extern int i ;

extra scope of i

\ f h e scope of an object specified as static
runs from the point of declaration to the
end of the same file.

In an outside declaration
private to the current file.

'static' means

An 'extern i r in the same file would refer
to the same i .

An 'extern i ' in another file would not be
associated with this static declaration.

fibe-t
lj\n outside declaration without an initializer
is a tentative definition. There may be any
number of tentative definitions throughout
the program provided their types do not
clash.

• I f the linker finds a unique definition of
the item it treats all tentative definitions
as redundant declarations

• I f the linker finds no unique definition it
treats all tentative definitions as a single
definition initialized to zero (| or zeros j).

int i ;

int

r^—••

i ;
nle-3

1

int i = 0;

74 ILLUSTRATING C

44lthough cxn object may be 'in scope'
it may nevertheless be hidden by the
scope of a local declaration inside a
block. Global i becomes 'invisible' in
the scope of local i .

l\n a deeper nested block you can
hide the current scope of local i with
an even more local i ^ a n d so on to
any depth, df In this example we use
'extern' to make global i hide local i in
the same block. J

not in scope of Func()

rf^global^n

int i = 3 ; ^^flo^cL
{ ^T (hides

f loa t i = 0.0 \^Z

e x t e r n int i ;

y = i

i ^^rjy picks up\

global

picks

picks
global
^-^^^

7)
upj

'up)
if

extern int Func (void) ;

extern implied
by default

jemicolon denotes a prototype
"declaration. The prototype declaration
declares that statements between here and
the end of the file may invoke Func(),
whose definition is elsewhere.

i jn a prototype declaration the 'extern' is
implied by default. In the example here,
int FuncC void) ; would be enough.

4 \ block instead of a semicolon
denotes a full definition of Func(),
its scope running from the closing
brace to the end of the file. It is
unnecessary to write a prototype
following a definition.

not in the
scope of Func()
^-^» --^__^-—>—-""—^-

int Func (void)
{

block

not in the
scope of Func()

scope of Func()

(the scope can be
extended to other files
by extern^

scope of Func()

(the scope cannot be
extended to other files)

—i

TJfhe scope of a function may be
kept private to the file in which it is
defined by declaring the definition
static. This feature is useful for
'encapsulating' information, together with
corresponding access functions, where
no other functions can see them.
Encapsulation is a vital principle of
OOP (object-oriented programming).

5: ORGANIZATION 75

RELEVAHT SPECIFIERS;
auto, register, static, extern

44n auto object, whether declared
auto explicitly or by default,
evaporates together with its contents
when control leaves the current block.

{ register i ; > 44 register variable behaves as an auto
' variable except that 0) you hint that storage

in a fast register would be appropriate, and (ii) whether the processor
takes the hint or not, ANSI C forbids taking a register variables address.

f int i = 2 * j + k; > /initialization of auto objects, or register variables, is
—- .—.—. . U 'dynamic', looking and behaving like assignment.

f static int i ; { Objects declared static are maintained throughout
• _ — - > the program's run; they don't evaporate.

TJfhe initializer of a static object is
evaluated at compile time; therefore it
may involve only constants and sizeof.

f static int i = 2 * sizeof (int) ;

{ extern int i ; / 4\n extern declaration in a block makes the linker
look first at outside definitions in the current file.

I f the linker finds the outside declaration 'int i = 6 ; ' it takes this to be the
i referred to by extern. The same would apply if the linker found a
static definition like 'static int i = 6 ; '

l\f the linker finds no outside definition of i in the current file, it assumes
a unique definition exists elsewhere ^ in another file belonging to the
program. (J 'int i=6f would be a valid definition of i , but 'static int i f in
another file would be ignored because that particular i is exclusive to its
own file, j)

l^ecause extern says that the object or function is defined outside the current
block fli whether in the same file or another]) it follows that an object
declared 'extern int i ' will not evaporate when control leaves the current block.

f extern int Func (void) ;
{ int Func (void);

iextern by default

is a prototype declaration. It says that
statements in the same block may invoke
Func(), whose definition is outside (J in the
same or another file \ The linker looks
first in the current file. If it finds an

outside definition d(beginning* int Func(void) { 'or 'stat ic int Func(void){ '])
it takes this to be the FuncQ referred to by extern. If the linker finds no
such definition of Func() in the current file it assumes the definition is to
be found in another file (J disregarding any declared static]).

ijf ou cannot initialize an object declared
extern anywhere. You cannot declare a
function static if the prototype declaration
is in a block.

extern int i = 6 ;
{ extern int i = 7 ;

^.static int F u n c (v o i d) ;

76 ILLUSTRATING C

THE ONLY ALLOWABLE
SPECIFIER IS register

int Func (int i) { C^block} } \ Qbject i is private to { block }.
— ->^ _jt^ / When FuncO is subsequently invcFunc() is subsequently invoked

from elsewhere (J[say as x = Func (2 * 3) ; j) object i gets initialized to 6,
and the statements of block are obeyed When control leaves the function,
object i and its contents evaporate. ^

/.parameters are intrinsically auto objects:
don't specify auto, static or extern.

int Func(register int i) J
f

i processor may take the hint
and store variable i in a fast

register rather than a memory location. Whether it does so or not, ANSI
C forbids taking the address of a register variable using & io r by indirect
means.

int Func (int i , int j , int k) 5 Q n a call such as:
— s s = Func(x*p, y*q, z * r) ;

you may not assume the order of evaluation of x*p, y*q, z*r. You may
assume all are evaluated before entry to Func().

4 \ parameter of a function may be
a function. For full understanding you
need to know about pointers (J next
chapter)) but here is an example: [short for (* MyFun)

int Func (float MyFun())

\ function as parameter of a function•include < stdio.h >
•include <math.h>
double Lookup (double LibFun () , double Argument)

return LibFun (Argument) ;
•* (names of

}< math.h >
int main (void) , ^ - 3 functions

i
printf (M\n%f %f", Lookup (sqrt, 16), Lookup (log, 2.718) ;

(41 parameter of a function may be
int Func (float MyArray []) I an array. For full understanding you

O r > * need to know about pointers (J next
chapter j) but here is an example of
a function that swops array elements:

short for (* MyArray)j

void

}

Switch (int
v/—>H

^Yj match jl
l/r

int Temp =
A [i 1
A [j 1

A

•

A
=

[], in* i,

[i] ;
A [j] ;
Temp ;

int j)

f exchange elements >.
\ 3 & 6 of array B [])

(as follows: \

(Switch(B, 3, 6) ; j

5: ORGANIZATION 77

INTERACTION, CLASH
& HIDING OF NAMES

TJfhe name of a macro in a #define
directive gets substituted for identical
tokens *z* to the end of the file or
corresponding #undef. The only
tokens immune to replacement are
those in comments and quoted strings.

#define pi 3.14

4f\ keyword (f such as float J) can be
replaced by the text of a macro.
Otherwise keywords may be used
only as keywords.

int Sam = 0;
float Sam [6] ;
int Sam (vo id) ;

#
int Sim;
float Sim[4] = f l ,
enum Tag { Red, Green, Sim };

— &

outside declarations, or at the
same level of nesting in any one block,
you may not give a variable the same
name as an array. Furthermore, names
must be unique among variables,
arrays, functions, enumeration constants,
and entities yet to be introduced (f viz.
defined types, structures, unions \ At
any one level all these share the same
name space.

£jut you may use the same name at a
different level of a block, thereby
hiding the entity at the outer level.

4\n example of hidden names on Page
75 shows how you can 'unhide' a name
at outer level using extern.

int Hid « 3;
int MyFun (void

float H id [3]={ l ,3 ,7} ;

struct Taglfint i, float f } ;
enum Tag2 f Red, Yello, Green } ;
struct Tag3 f char c, struct Tagl } ;

these names
mutually
distinct

Vags are names used to identify
different enumerations, structures and
unions. Tags share name space and so
should be mutually distinct. But you may
hide one tag with another at different
level in the manner already illustrated
for variables.

TThere is no interaction between names
of tags and names of other entities.

TJhe members of any one structure or
union must be uniquely named, but there
is no interaction between identically named
members of different structures or unions.

Pstruct OneStruct {int i, float f } ;
struct TwoStructftnti, float g } ;

if (Chaos) goto Labi;

Labi: printf("Bad d a t a ") ;

4 \ goto statement specifies a name to
match that of a Label within the same
function. In any one function all labels
must be unique. There is no interaction
between names of labels and names of
any other entities in the same function.

78 ILLUSTRATING C

Tjfhis is probably the most important chapter in the book;
the art of C is handling pointers. Pointers are closely
associated with arrays* and arrays with strings.

i j he chapter begins by explaining the concept of a pointer
and defines two operators, * and &, with which to declare
and manipulate pointers.

[yecause C works on the principle of 'call by value1 you
cannot return values from functions by altering the values
stored in their parameters. But you can use pointers as
parameters and make functions alter the contents of the
objects they point to. This concept may appear tricky at
first, but glorious when you can handle it confidently. The
chapter spends some time on this concept.

f / you add 2 to a pointer into an array, the pointer
then points to the element two further along, regardless of
the length of element. This is a property of pointer
arithmetic* the subject next described in this chapter.

4*\ost pointers point to objects, but you can make them
point to functions as welL The chapter shows the
correspondence between pointers to arrays and pointers to
functions. You may care to skip this topic on first reading;
likewise the next which analyses the structure of complex
declarations. Complex declarations are easy to understand
once you have felt the need to set up a data structure
in which pointers point to other pointers.

TJo manipulate strings you need only simple pointers. The
second half of this chapter explains strings and their use.
Strings are simply character arrays designed to hold words
and sentences. C programmers follow certain conventions in
the structure of strings. These conventions are described.

THE SPIRIT OF C

TJfhe idea behind pointers was introduced in the
context of sorting, Page 63. The following statement
causes the letters to be printed in order:

for (k = 0 ; k < 8 ; ++k)
printf ("\n%c", Letters[Pointers[k]]) ;

y u t this is too clumsy for C which has special
variables and operators for handling pointers. If
you find the concepts confusing, persevere! They
Decome beautifully clear when the penny drops.

Pointers Letters

w
Ul
EJ

Ds]
[?]

1 -
4~
0-
7-
3-
2 -
G

5-

AX2J

-Af7]

Q
B
L
I
C
N
M

H

Of p names a pointer variable, *p denotes the object currently pointed to
by p.

*p 1.234

Ijerminology: When a job is advertised, the one who appoints is called
the appointed The successful applicant is called the appointee. On the same
linguistic principle, let the object indicated by the pointer be called the
pointee. * p denotes the pointee of p.

TJhe term * p (J the pointee of p ^ may be used like the name of a
variable:

means assign the pointee of p
(i.e. 1.234) to the variabte x thus

means assigning 2.345 to the pointee of p
(overwriting what p formerly pointed to)*p = 2.345;

ljjehind the scenes, pointer and pointee are linked by address.

Z.34-5

80 ILLUSTRATING C

Tjfhe address of an object is denoted by the object's name, preceded
by ampersand, to say 'the address oF..! or 'the value oF pointers to..!

the address oF x is
denoted &x

to x by assigning & x (jf you need not know it's 1024 J) to ĉ thus:

= & x ;

2.345

you can access the content of x via the pointer variable as

TJfhere is no further need to depict absolute addresses. Here is the
picture that says it all:

7instead oF x
can write *q\

float x, y;
float * p , *q;

the pointee oF p is
oF type FLoat

TJhe first declaration establishes x and y as variables of type float in
the usual way. The second declares 'pointer variables named p and q, of
which the pointees are of type float. In other words p and q are
intended for pointing to variables of type float.

Tjfo declare a 'pointer variable you tell the processor what type oF object
you intend to point to.

char
char * pv [6] ;

TJfhe above declares an array of six
elements, pv[0] to pv[5] (f all
pointers D, their pointees being of
type char.

int * const coptr = & x ;

const int * ptrcon;

(Qualifiers apply to the nearest
rightwards entity; coptr is a constant
(| initialized D pointer with an integer
pointee; the pointee of ptrcon is a
constant integer.

6: POINTERS, ARRAYS, STRINGS 81

USING POINTERS TO COMMUNICATE
WITH FUNCTIONS VIA THEIR PARAMETERS

4 j \ common requirement in programming is the exchange of values held
in a pair of variables or array elements.

/jjere is a block of 'in-line' code to
exchange the values held in a pair of
variables, i and j .

(ijow about a Function for swopping values?

int
1 -
j =

1

Temp

- Temp

(

s 1-

!/«—v^—

in-line code\

void Swap (char i, char j)
TJhis one is no good. Parameters in C are
called by value. The function manipulates
copies only.

^Juppose your program had 2 stored in A,
3 stored in B. And suppose you invoked
this function as:

Swap (A, B) ;

TJhe processor would enter the function, assigning a copy of the
contents of A into i , a copy of the contents of B into j . It would then
swop the contents of i and j , then return, leaving the contents of A and
B undisturbed. No good! The trick is to employ pointers as parameters
and swop their pointees.

lj*he function on the right may be
invoked as:

Swop (& A, & B) ;

Tjfhe processor enters the function
assigning the address of A to iff which
makes i point to A j and the address
of B t o j (f which makes j p>oint to B j)
The pointees of i and j are then
exchanged.

*y"he above function may be invoked with addresses of array elements
as arguments (j[e.g. Swop (& p [i] , & p [j]) D or you may write a
swopping function that has three parameters, the first nominating the array
and the other two the subscripts. This function (J which exchanges elements
of an array of pointers to char]) might be invoked as:

void Swop (int * j , int * j)

void Exch (char * v [] , int m, int n)

. ^ * tT r ~ r T^rh/pe of Temp to ^match
char * Temp = v [m] ; \^thatofv[m]
v [m] = v [n j ;
v [n] = Temp;

82 ILLUSTRATING C

PROTOTYPES, POINTERS,
POINTERS AS PARAMETERS

re is the sorting function from Page 63 re-written with (i) prototypes
to allow functions to be assembled in any order^ (ii) an array of poin-
ters (f a pointer vector \ instead of making do with integers, (iii) a func-
tion for exchanging the contents of array elements, (iv) a function for
comparing entities. This arrangement keeps the sorting algorithm separate
from the details of comparing and swopping. By writing replacement
Comp () and Exch() functions you may use Usort (i unchanged except
for the type declaration ^ to sort objects of any type.

prototypes

#include < stdio.h >
void Qsort(char * [] , int, int)
void Exch(char * [] , int, int);
int Comp (char, char) ;
char * pv [{00], Letters [100];
int main(void)
{

int i , n, c;
printf ("\nType some letters & press Return\n")
for (n = 0; (c = qetchar()) != VT; ++n)

{
Letters [n] = c;
pv [n] = & Letters [n]

j stops reading}
chars on
, Return,

Qsort (pv, 0, n-1);
for (i=<0; i < n ; ++i)

printf C"%c", * p v r i]) ;
return 0;

Letters

[i]
[2]
[3]

[41

• -
• -

#-
• -

• -

c
A
E
D
B

= ABCDE

int First = i , Last = j , Way= 1, Temp;
while (i != j) ^^eTooTofthis page for Comp

p[i], *p[j]))if (Way - - Comp (

Exch (p, i , j) ;
Temp = i , i « j , j
Way = !Way;

j +« (!Way - Way);

append function Exch ()
shown at the foot of the

opposite page

Qsort (p, First, i - l) ;
Qsort (p, i + l , Last);

Comp () would be more compLicated if it
compared words rather than Letters

int Comp (char a, char b)

return a > b ;

6: POINTERS, ARRAYS, STRINGS 83

AND A FRESH
LOOK AT ARRAYS

were introduced earlier as named patterns of subscripted
elements, the elements behaving like variables. Behind the scenes, however,
subscripts of arrays are handled as pointers. Here is a fresh way to
depict arrays:

float a [] = { 1.23, 2.34, 3.45, 4.56 } ;
int b [] = f 10, 11, 12, 13 } ;

2

3

4
5

23

•34
.45

.5G

.67

Ijfip array is treated as a named 'pointer
constant' pointing to the initial array
ebement.

4jt follows that instead of writing a[0]
you may write * a (J' the pointee of a]).

^ than that! Instead of a [3] you
may write * (a + 3) (J the 3rd element
beyond the pointee of a J .
Similarly * (b + 3) for b [3] .

printf (" \n%.2f " , a[i]) ;
printf (" \n%.2f " , * (a + 3)) ;

printf (" \ n % i " , b [3]) ;
printf (" \ n % i " , * (b + 3))

\ZJn a typical installation an element of a [] (J type float D would be twice
as long as an element of b [] (f type int j) . To locate a [3] or b [3] the
processor compensates for length. In one case the '3' signifies three times
the length of a float, in the other it signifies three times the length of an
int.

TJhe same applies to * (a + 3) and * (b + 3) ; the '3' signifies the third
element, whatever the types of a and b.

\^ /hen you work with array subscripts, or with pointers, the processor
takes care of types and their lengths; & a [l] - &a[0] yields 1 whatever
the type of a.

printf (" \ n % i " , sizeof (float)) ;
printf (" \ n % u % u " , & a [l] , & a [0]) ;
printf (" \ n % i " , & a [l] , & a [0]) ;

84 ILLUSTRATING C

/£\ corresponding example using pointers in place of array subscripts
would involve the terms &*a and & * (a + l) . But the '&*' says 'the add-
ress of the pointee of . . / which cancels itself out. So &*a is the same
thing as a ; &*(a + l)is the same thing as a+L It follows that &*(a+l) -&*a
is the same thing as 1, being independent of the length of type a.

j u may assign the value of a pointer-constant to a pointer-variable of
compatible type:

ign: (array a I'] is
onfloat * p;

p = a;
printf ("\n%.2f", * (p + l)) ;

Î Jut the converse is meaningless:
Constants, by definition, are constant:

4 f ou may apply integral offsets to
pointers, positive or negative:

float * q ;
q = p + 3;

3 is a simple
example or an

integral expression

_he constant 0 (J zero)) may be assigned to a pointer-variable to
signify that it is unset. The header file <stdio.h> offers a zero constant,
NULL, for indicating unset pointers.

4fou may subtract (f never add j) pointers that point into the same
array. The result is integral and it could be large. Header file <stddef.h>
offers the special type, prtdiff__t for declaring variables in which to store
such differences.

printf ("\n%.2f", q [- 2]) ;N g e subscripts are allowed
provided they remain in bounds.

Inception: The pointer is allowed to point just one increment beyond the
last element. In the following example, p ends up pointing to a
non-existent element, a [5] . At that stage * p would be undefined.

fo r T^a;~p<<rr5T++p) I
printf (f'%.2f ", * p) ; ^-A 1 . 2 3 2 . 3 4 3 . 4 5 4 . 5 6 5 . 6 7

Ijiointers into the same array may be compared using >, >=, ==, != etc.

Tjhe number of elements in an array may be found from:
sizeof arrauname f sizeof (type) *^?\X^^~^—- - - - - ^

rparentheses essential For types,)
More neatly: ^ ^ ^ /or objects^

sizeof arrayname t sizeof arrayncuve I' 0']

6: POINTERS, ARRAYS, STRINGS 85

MORE ARRAYS: MORE FUNCTIOHS
WITH POINTERS AS PARAMETERS

T^naze your friends. Write down a long
multiplication such as this; then start writing
down the answer, digit by digit, from right to
left, carrying all the working in a cool head.

TJhe trick is mentally to reverse the bottom
number, mentally shunting it leftwards past the
top number. At each shunt multiply only the
digits lying beneath one another, summing the
products. Write down the last digit of this sum
and carry the rest into the next shunt. The
entire process is depicted down the right of
the page.

TJfo see how it works, consider each number
as a polynomial in \0. In every shunted
position the products of terms lying one
above the other yield the same power of 10.
Furthermore these terms are the only terms in
the same power of \0 (j(but not forgetting the
carry from above]).

4 x lo3 -f- 6 x id1 + 7 x JO1 + 5 x 10°

9 x 10° + 8 * iOl

Tjhe program opposite automates the method
or multiplication described above. It can cope
with any reasonable length of multiplication by
adjusting the constant OP \e.g. #define OP 35 \
As set opposite, the program can multiply
terms as long as 35 digits, giving a product
as long as 10 digits.

J use the program type two numbers
separated by an asterisk and terminated by
an equals sign. Then press Return.

4675*389=
1818575
11111111111111111111*20000000000000000000=]
2222222222222222222200000000000000000000

i j he program offers another go. When fed
up with it, hold down Ctrl and press C (J or
whatever it is you do on your particular
implementation to abort a run]).

ma
5x 9 = 45

6*9 =

135-

7x3= Zl

86 ILLUSTRATING C

/* Any-length rnulhplicohon */
•include < stdio.h >
•define OP 10
int Read_Op (int *, char);

int main (void)

long in* sum;
int a [OP], b[OP], c[OP + OP]
int i, j , k, m, n;
while (i)

{ printf C " \ n ") ;
i = Read_Op (a, ' * ') ;
j = Read_Op (b, ' = ') ;

n = i + j ;
sum = 0;
for (k = n; k>=0; — k)

for (m = k; m>=0; —
if (m <= i && (k - r

sum += a[m]
c [n-k] = sum % 10
sum /= 10; ^^/--~v->^

if (sum) ^^*^(Final carry
c[++n] = sum; < ^ K not zero

while (n + 1) ^ ^ * -
printf (" % i " , c [n -]) ;

prototype of
Read-operand Function

return 0; •^pointer
S to int]

int Read_Op (int *p , char Xit)

int r, Ch;
for (r = 0; (Ch = getchar()) != Xit; ++r)

if (Ch >= '0' && Ch <= '9' N ^ ^
p [r] = Ch - V ;

else
— r ; ^gp^f ignore non-digit

return —r ;
return subscript

oF Last digit

Tjfhe function for reading the operands terminates on the character you
specify as the second parameter. It reads the digits into the array
pointed to by the first parameter. The function returns the subscript of
the final digit; thus if the function reads a seven digit number (J 0
through 6 jj) the function returns 6.

6: POINTERS, ARRAYS, STRINGS 87

YOU MAY CARE TO SKIP
THIS ON FIRST READING

TJhe demonstration program on Page 77 is reproduced below.

#include < stdio.h > ^^^dou^^
#include < math.h > ^ ^ ^ - ^ ^ ^ ^ ^ ^ ^ - ^ - ^
double Lookup (double LibFun (), double Argument)
f

return LibFun (Argument) ;

int main (void) 14.000000 0.9998967
printf ("\n%f %f", Lookup (sqrt, 16), Lookup (log, 2.718)) ;
return 0;

ijfhe program shows that one function d[Lookup() D may have another
function (f LibFun () {) as a parameter. When you invoke Lookup () you
provide the name of an available function as an argument in place of
the dummy parameter. In essence, you follow the same pattern as for
numerical parameters.

y u t 'double LibFun()' is actually an allowable shorthand form of:

double * LibFun) \ (() signifies 'function
* (which has unspecified

(arguments) returning ../)
'necessary parentheses;
() binds tighter than *)

TJfhe parentheses around * LibFun are needed because () binds tighter
than *. Without parentheses this parameter would parse as
double * (LibFun ()) which says 'Function returning pointer to a
double'. With parentheses as shown it reads:

'LibFun is a pointer to a function that returns a double.'

fou may find the concept easier from a different point of view:

double (* LibFun X) The full declaration

* I 9 H 1 This shape signifies a pointee (fsomething pointed to])

I g l l l l j This part of a pointee identifies the pointer of the
pointee, in our case LibFun j

1 LibFun is a pointer pointing to ...'

double I () This shape declares a function that returns a double.
'LibFun is a pointer to a function returning a double.'

£}o a function name (J sqrt or log in the program above J) is Q constant
pointer. The concept of array names is similar; an array name is a
constant pointer to the beginning of that array; see the depictions opposite.

88 ILLUSTRATING C

FUNCTIOH&

\x\\ f (double d) ;

fl

Ij4ere is a demonstration program to take the concept a step further.
Given a number, the program prints its square root, log and anti-log.
These are library functions with prototypes in <math.h>.

7 ^-^L double

h
__ he data structure is depicted p

here. P names an array of
pointers (j[function names J) to
library functions.

library '
functions

contains prototypes
Rouble sqrt (double) ; etc

array initialized
with function

pointers (i.e.
function names)

declaration
analysed

below

#include < stdio.h .
#include < math.h >

int main (void)

double r, v ;
int i ;
double (* P []) ' () = { sqrt, log/exp } ;
printf ("\nEnter a + value: ") ;
scanf ("%l f " , &v) ;
for

Enter a 4- v a l u e : 3.5

1.8708

1.2528

33.1155

return 0;

TJhe complicated declaration may be analysed in the manner shown
opposite:

double (* P []) () Mind the precedence! [] binds tighter
than *. Implied parentheses are shown

double (• (P [])) () <3ahere.

This nominates an array element

The pointee of any element P [i] is

() . . . a function that returns a double.

P [1

double

!P is an array of pointers, each of which points to a function
(? having unspecified parameters j) that returns a double'

6: POINTERS, ARRAYS, STRINGS 89

YOU MAY CARE TO SKIP
OH FIRST READING

Jj± complex declaration is illustrated on the previous page. Here it is
again, analysed as a 'parse tree':

double (*

double

functions
which return

doubles

zre is a data structure involving arrays of pointers to arrays:

P
X _ * i L

U

L<t>1
[11
[21
[31
[41
151

• - Wl
[11
[21
[31
[41
[5]

0
0
0
0
0
0

'irregular'
"tree' A

[<Pl
[11
[2]

<t>
0
999

ijfhe demonstration program opposite shows how such a structure may
be set up; first by declaring the arrays, then by linking pointers to
addresses. The structure may be described by analogy with a tree having
a root, branches and leaves.

Tjfhe program shows how to access a particular leaf from each junction
on the path from the root. Notice how the expressions for access suggest
and reflect the array declarations.

90 ILLUSTRATING C

#include < stdich >
int main (void)
f

J/3 implied by
\initializer,

int u [6] , v [] = { 0, 0, 999 }, w [2] ;
int (* r [8]) r i . (* s [4]) [] ;
int C * (* o [6]) []) [] ;
int (* (* (*p) N) []) [];

sizes of ait arrays must
[be specified or implied by]

initializer

p = &a;
a[H] = &r ;
o [l] = &s;
r [0] = &u;
r [l] = &v;
s [0] = &w;

printf ("\n%i",
printf ("\n%i",
printf ("\n%i",Pr

printf ("\n%
return 0;

. ri

v [2]
(* r [l]) [2]
C * (*a[a]) [1]) [2]
(* C * C * p) [0])

change subscripts
access any other Leaf

|ere is a 'parse tree' for the declaration of p:

inf (» (* (» p) []) []) [

r
p is an

unadorned
pointer to..

an array
of pointers

to...
arrays -

of pointers
to...

arrays
of int

] ;

l\n the expressions for access to the same leaf (J which mirror the
declarations of pointer vectors j) climb back from leaf to root by
replacing each local array name with the pointee from the previous level.
For example, both v and r [l] point to the same place, so replace v with
the pointee of r [l] . Follow this on the diagram apposite:

printf (" \n%i" ,
printf (" \n%i" ,
printf (" \n%i" ,
printf (" \n%i" ,

v [2
. * r f l]) [2
(* (* a [0]([

(* (
[l]) [2]

*p) 10}) [l]) [2]) ;

6: POINTERS, ARRAYS, STRINGS 91

THE USUAL FORM OF A CHARACTER ARRAY

Ij4ere is an array of characters initialized from a list of character
constants:

c h a r D i s c o [] = { P , o , p , , 2 , g) } ;

Disco [02

Cl]
[21
[31

[41
[51

\fhen working with character arrays
it is useful to append an extra
element to mark the end of the
array. Advantages of this approach
are demonstrated at length later.

\fhat character do we use for the
marker?

Disco
TJfo appreciate the problem, consider how
characters are represented inside the
computer. Many implementations represent
characters by their ASCII codes. $ I have
shown ASCII codes as decimal numbers;
the computer would store them as binary
numbers.])

i j he answer is to use zero for the marker, not '0' (j[which has an ASCII
code of 48 D but an internal code of zero. Use the escape sequence \0
to represent the internal code of zero.

char Disco [] = { 'P\ V , 'p1, ' ', Y, V, '\0* } ;

Disco 4HP array of characters terminated
by a zero marker is called a string
d or string array D.

i j fo initialize a string, C offers the
following short cut:

J
char Disco [] = "PopA20" ;

counted to 7\
automatical!

[spaces are4
V significant

\0 appendedJ
• automatically*

TJhe zero marker is included in the count. The same result would be got
f rom char Disco[7] = "Pop 20". But char Disco[6] = "Pop 20" is an
error, a likely result being the loss of the zero marker.
Disco\\0] = "Pop 20" would create a string with zeros in the extra elements:

[01 Ei] C21 [3] C41 LSI Z6J 171 [8] LSI

2 [0 |D i s c o P \0

92 I L L U S T R A T I N G C

POIHTER IS A CONSTANT;
STRING IS MALLEABLE

char Disco [] = "Pop 20" ; > string array]

t<t>i r n m [3: u i

Disco P I O I P

Jpointer>pcnncer i an | ^ *
constant) If ou may not assign to a constant: Disco = p; f

[•Jut you /ray change the contents of elements in the array provided you
do not try to extend it.

D i s c o [a] = T ,
' A 'Disco [l] += 'A' - V ;

Disco [2] +« 'A' - V ;
[flf LU [2] T3] [4] [si re]

[T |0 IP 1)2 Ifl l\0l

(j^rograms which manipulate strings typically declare a set of string
arrays, each of adequate length. An example is :

char r[8l], s[8l], t[8l],

where the string currently in each array may grow to a length of 80
characters $ and its terminating '\0' J.

L01 111 121 m 141 151 161
T\0 |P

/Teservecf^area of lnemory

string pointerschar * p , * c j , * Gig = " TUNE" ;

p and a can point only to characters
they point nowhere at present

Gig is initiaLized to a
constant string

POINTERS VARIABLE;
AHY STRIHG IS CONSTANT

4i|though you may find it possibbe to alter a string constant (j(e.g.
Gig[2] = '0' to change " TUNE" to " TONE" J) the outcome would be
undefined. ^ L

y u t you may freely assign pointers ({including pointers to constant strings])
to pointer variables:

p = Gig;
Gig = Disco;

Disco

[03 Ci] 121 L*>1 LA] LSI 163

T 0 P 2 0

T U M \0J

6: POINTERS, ARRAYS, STRINGS 93

call to the printfO function (J defined in <stdio.h> J) takes the form:

prHf (siring

TJhe string contains as many descriptors as there are expressions
following. So far we have met % i , %f, %c. There is also %s for the
substitution of a string defined by its pointer:

printf ("%s TO %s", p, Gig) ;

4Jjl examples of printf have so far shown string as a literal string (j in
other words in quotes]). But wherever a string is demanded, you may
provide either a literal string or a pointer to a string. There should be a
zero marker at the end of the string.

printf (Gig) ;
printf (p) ;

CAREFUL' ^
rif Gig or p contained %,

Yprintf would look for an extra
^argument to match each %

NO NEED FOR EVERY ROW
TO BE THE SAME LENGTH

/It is sometimes useful to store a set of constant strings
of days of the week ("Monday", "Tuesday",...) or em
addressed to the user of your program:

such as names
error messages

int ErrCode (int n)

static char *Mess[] =

Bug ,
"Should be greater than 1 ,
"Too many sides",
"Unrecognized code"

int s = sizeof Mess / sizeof Mess[0] - 1;
n = (n > s | | n < o) ? 0 : n ;
printf C^-rror No. % i : %s! , n, Mess[n]) ;
return 0;

array private to ErrCode

|glr|e|o|t|e|r| |t|h|o|n|

0n0 |n|i|z|e|d| |clo|d|e|NP|

94 ILLUSTRATING C

CATERING FOR OPTIONS
WHEN YOU RUN THE PROGRAM

ijfhe way to set a C program running depends on the implementation.
Typically you type a command nominating the file in which the executable
program is stored, then press Return.

MIMIC ^J^Tl command)

4 \ program may be written that demands (Jf or will accept as an option])
extra information in the command line: ^-^^^-~\

command)
lineMIMIC Caps tabs

TJfhe manual that explains how to use such a program might define the
allowable command line by a syntax diagram like this:

MIMIC -CAPSI T | r
v L/C-J WABS-^

ijfhe options are automatically handed to function main() provided that
you give main() two parameters: the first is of type int, the second is
an array of pointers to char. Conventionally these are called argc and
argv[] respectively:

int main (int argc, char * argv [])

Tjfhe processor parses the command line into strings, recording their
number (j(at least one)) in argc, and setting up a pointer vector ^
terminated by NULL ^? as depicted below:

/MIMIC Caps tabs
argc [T] argv [T]

j l is a program that lists the arguments corresponding to its
command-line parameters, excluding the name of the program file:

include < stdio.h >

int main (int argc, char * argv [])

while (— argc)
printf ("%s\n", * ++ argv);

the pointee or the
augmented argc

fto list the full command]
\line, change --argc to*
I argc— and change
\^^rgyto*a

MIMIC Irish? No, I can't.
Irish?
No,
I
can't.

6: POINTERS, ARRAYS, STRINGS 95

%<smm
Tjfhe printf() function is defined in Chapter 7 as follows:

int printf (const char *, ...) ;
' the ellipsis denotes an
{^unspecified number of)
^^^\arguments_^^01^

xamples of invocations (J each with a different number of arguments])
are:

printf ("\nThere are %i lumps weighing %f grams", n, w) ;

(%i says the <
first argument

\will be an int

printf ("\nAnswer is % i " , count) ;

parameters for
the two extra

arguments expecti

lgo\x can write functions such as this, in which there is at least one fixed
argument followed by an unspecified number of extra arguments. The
header file <stdarg.h> defines a tool kit for retrieving the extra
arguments. The tools are described below:

l/irst declare a pointer to the
list of extra arguments

f this ahead of your first
use of va_arg()

•include < stdarg.h >

va_list a p ;
— v̂

a special pointer type

va_start (ap, n) ;

name of the
argument-

pointer

name of Last fixed
parameter in the

(declaration of this
function

va_arg (ap, int) ;

j^Iace this below your last use
of va_arg()

j any number of these
between va_start() and
va_end(). Each invocation of
va_arg() returns the next
extra argument and treats it as
having the type you specify.

96 ILLUSTRATING C

/jjere is a function to compute the arithmetic mean of its extra
parameters. It has only one Fixed parameter, and that is to convey the
number of extra arguments you supply:

2prototypes of va__arg () etc.#include < stdarg.h >
#include < stdio.h >
double Mean (int Count, ...)
f

. ? • rs AdecLare ap as pointer to,
double Sum=0 j ^ ^ O ^ ya_Ust
va_list ap;
va_start (ap, Count) ;
for (n = 0; n < Count; ++ n)

Sum += va_arg (ap, double) ;
va_end Cap);
return Sum / Count;

make ap point to the first extra
argument (after count)

ypick up each extra argument in
turn - treating it as a double* '

Ijijere is a test-bed for the function. It is tested on four, two and one
extra arguments respectively;

int main (void)

printf ("\n\n%f", Mean (4,
printf ("\n%f", Mean (2, l.

1.5, ^
printf (\ n % f , Mean (2, 1.2, 3.6)) ;
printf ("\n%f", Mean(l, 6.7)) ;
return 0;

argument for
fixed parameter

y y now you should have spotted a fundamental weakness in the
argument-retrieval scheme: you have to tell the function how many extra
arguments to expect, and what the type of each will be. There is no
equivalent of the 'argc' and 'argv parameters of function main().

Tjphere are three distinct ways of telling the function how may extra
arguments to expect:

• As in the example above, use one of the fixed parameters as a
counter; or

• Let the final extra argument act as a marker. For example, if all argu-
ments should be positive numbers, terminate the argument list with -1 and
watch for this signal when reading them with va_arg(); or

• Use the idea found in printf(), scanf () , et aL The last fixed
parameter is a string; each occurrence of % in the string signifies
the expectation of a corresponding extra argument in the list that
follows. Furthermore, the style code (% i , %f, %s etc.) tells what type
the expected argument should be. You can handle a range of
distinct types with a switch statement having a different va_arg()
for each case.

6: POINTERS, ARRAYS, STRINGS 97

A SET OF FUHCTIOHS
FOR MANIPULATING STRINGS

4 j \ of programming is concerned with strings. The ANSI C library
offers about thirty string-handling functions that cover everything one
would want to do. Here we develop a similar, but smaller, set of
functions which nevertheless covers most of what one needs. Some
resemble functions in the library, others are different (f particularly the
one for reading strings from the keyboard]) .

in* ^String (char * , InK), Irrt) ;

Tjhis is a function for reading
strings typed at the keyboard.

4gp example of a call is:

Janette 3.5 7
in 12]

KeyString (ps, Spaces, 4) ;
1

\fh\ch serves to read and
ignore leadina spaces, then to

d t f h

v:;;rm
T?;;;.Ti i

- H 3 I . I si\g>T7 XT1
g e leadina spaces, then to
read up to four characters into the array pointed to by ps, then to
read and ignore any remaining characters in that string * e.g. 'tte' in
Janette J) .

cjtrings typed at the keyboard may be terminated in the usual way
\\ whitespace J or by any other characters you care to List Name a function
and list your selection. For example:

int Punctuators (char t)
{

return (t - V) + (t « f ') + (t - V) + (t - f ; f) ;

zjhe above causes termination on tab, space, new line, semicolon. The
function below terminates the item on reading a space or new line only.

int Spaces (char t)

return (t==' ') + (t==An');

i j h e third function (below) terminates the item on reading new line
only. In other words it gets the next line of input:

int Lines (char t)

return (t=='\n');

j f first parameter of KeyString () points to the array into which the
string from the keyboard buffer is to go, the second nominates the
termination function, the third specifies the rnaximum number of characters
to be stored in the receiving array (J the 'significant1 characters]) .

98 ILLUSTRATING C

/ * READ NEXT STRING FROM KEYS * /
int KeyString (char *p , int TermFunc (c h a r) , int length)

^ ^ ^ ^—.N ~ ^J short for (*TermFunc))
inr c \
char * s ;
if (length < 1

return 1;
s = p + length - 1;
while (TermFunc (

constant in
stdio.h signals
end of file

ungetc(c, stdin) ;
while (! TermFunc (

if C D < s)
*p++ = c;

*p = \0;
return (c == EOF) ? EOF : 0;

getc(stdin)) && c != EOF)

c to input for next getc(') to read]

getc(stdin)) && c != EOF)

return EOF signal

return 0 if OK .

TJfwo features of this function need clarification:

• ungetcC) causes the nominated character to be 'pushed back' on the
nominated stream (J in this case stdin]) to be picked up by the next
getc().

• EOF is a constant defined in < stdio.h > (f in several processors it
takes the value -1 J). EOF is what you get if you read when there is
nothing more on the input stream to be read. With every processor
there is a way of sending EOF from the keyboard. With DOS systems
you hold down Ctrl and press Z. Consult your particular manual on
what to press.

y is a little test bed for demonstrating the KeyStringO function. To
try the test bed, run it and type:.

INote; This function is useful

and press Return.

Tjhe screen responds:

specified
truncation in

call to
KeyString

Tjfype other sentences.
Finish with EOF.

/* TEST BED FOR KeyString */
#include < stdio.h >
int KeyString (char*, int (*) (char), int) ;
int Punctuators (char) ;
int main (void)
{

int i ;
char String [81] ;
while (1)

i= KeyString (String, Punctuators, 5) ;
printf ("%s\n", String) ;
if C i == EOF)

break;

return 0
} append KeyString(), and)

6: POINTERS, ARRAYS, STRINGS 99

ijfhe following two functions work for ASCII code in which letters are
numbered contiguously. EBCDIC code would require some complication.

A
int
f

A
int
rI

NOT FOR EBCDIC: Returns
IsCap (char c)

return c >= 'A' && c <=

NOT FOR EBCDIC: Returns
IsLetter (char c)

return IsCap(c) || (c :

1 if

'Z' ;

• *

>= 'a'

c is

c is

&&

a

a

c

capital, otherwise

letter, otherwise £

<= V);

0 * /

i * /

TJhe next two functions work for any code. For IsVowelO a static
array is initialized at compile time and scanned on each call.

/* ANY CODE: Returns 1 if c is a vowel, otherwise 0 * /
int IsVowel (char c)

static char v [] = "EeAaliOoUu";
char * p ; ^ , .
p » v ; ^r^^^jtort for*p /* \p
while (* p && (* p != c))

++I
return == c;

101
e[A[a|r[irololU|uMl

[101

/* ANY CODE: Returns i if c is a digit, otherwise 0 * /
int IsDigit (char c)

return o . c o V ;

LENGTH EXCLUDING THE NULL

7J0 compute the length of a string, take a copy of its pointer. Then
increment the pointer, stopping when its pointee is \0 (jf false]) . The
length of string, excluding the \0 element, is 1 less than the difference
between the augmented and original pointers.

int

}
i

StringLen

char * c
while (*

»
return p

(char

L - P ;
P ++^

* P

I
\original)

++ adds / i
y to p after\
^ the test r

p
ih
l«l
^^

b

t

111 131 CA3

c |\d |

""V—V—N, . ^ ^

ILLUSTRATING C

COPY ALL, COPY A PART,
COPY & CONCATENATE

4|f you want <\ to point to the string pointed to by p, simply copy
pointers thus: q = p . But sometimes copying pointers will not do; you
have to copy a string, element by element, to another location. To do
this, copy the pointee of p to the pointee of q, then increment both
and p, stopping when the pointee of p is '\0'.

" • ~n , ^ t03 EH P I

void StringCopy (char * p, char * q) | p (

while (* q = * p)
++ cj, ++ p ;

/j)pd here is an even
more terse version:

void StrCopy (char * p, char * q)

while

Tjfhe next function copies part of a string. You give the position of the
starting character and the number of characters to be copied to the new
location.

void Middle (char * n, char * p, int Start, int Span)

int L = StringLen (p) ;
if (Start >=0 && Start <L && Span>0)

if (Start + Span > L) ^Z^fif Span overlaps^end'ofA
Span = L - Start;

* (n + Span) = \ i ' ; — —
while (Span -) n 0—»»)x \y\i

* (n + Span) = * (p + Start + Span) ;

else t—i

}
* n « \0 ;

s—start
111 [21 C3l 141 E5] [61 [71 [83

I C j p j x | Y | Z ! W 1 \ 0]
M Span- 3

Tjfhe final copying utility copies two strings, locating them end to end as
a new string. A typical call is Concat (N, L, R) ; the only overlapping
allowed is Concat (L, L, R) . Either original string may be empty.

void Concat c

if (* left
f

while

new

while (*

i

(

char * new, char *

)

*

new

new ++ = * left
r?step back)

{over \0J

++ = * right ++

left,

++)

new

)

char *

leff[

right [

n i

right

• — 1 —
i

0 b

)

c

\a

]d

d

blc

e f

e f

19 Ml

) g |\<z>|

6: POINTERS, ARRAYS, STRINGS

ONE WITH ANOTHER
OR PART OF ANOTHER

\fhen comparing strings, is "Twine" equal to "twine" ? And do we want
to test for equality or for relative ordering ? The function Compare ()
offers parameters by which to specify both such requirements.

Tjo make the parameters meaningful, create two types* enum Mode and
enum Logic, by the following declarations:

enum Mode { Distinct, Equiv } ;
enum Logic f eq, ne, gt, ge, It, le } ;

call to Compare() might be:

Ok = Compare (p, eq, q, Equiv) ;

*hich sets Ok to 1 if strings p and q are equal on the assumption that
upper and corresponding lower-case letters are equivalent:

Ok = Compare (ps, gt, "Wilkins", Equiv) ;

TJhe above would set Ok to 1 if the string pointed to by ps is to be
placed above "Wilkins" in a sorted list like a telephone directory.

JT function assumes V < V <
'c etc. and distinguishes strings on
their first non-matching character.
Thus "Jones" is greater than
"Joan's" because 'n' > V . Also,
"Jo" is less than "Joan's" because
V < V.
Ijiunctuation marks and other characters are ordered according to their
internal codes. In ASCII, for example, an apostrophe is less than a full
stop, so " X ' s " precedes " X . s " in a sorted list. One would expect
"Buzz9tr to precede "Buzzltf" but the criterion is the first non-matching
character; 9 is greater than 1 so "Buzzltf" precedes "Buzz9ft in the
sorted list (not nice).

TJO handle case distinction or equivalence we call on the function Uc()
shown below:

/*
/*

NOT
if c

char Uc
r
1

}

FOR
is

: C

return

a
EBCDIC
lower

char c,

(M &&

: Returns
case and

upper
letter

(enum Mode Th

(c >= V) &&

case
and

(c

if
-—\;

equivalent
Mode

2
<= V)

is

)

of c
Equiv

CMode
[Equiv

? c +

/ *
/ *

3
'A1

(Mode\
(nictinrr

TlV
- a : c ;

ILLUSTRATING C

/* Compare
/* with Equiv

int Compare

L %= 6 ; '
while (*p

switch(L)

case
case
case
case
case
case

return 0\

two strings
case (0;

(char * p

for equality (0), non-equality (l), etc. */
or Distinct case (l) */

, enum

^r~i? ensures range 0

> && *c£ && (U c O

0i return
1: return
2: return
3: return
4: return
5: return

* P —
* p ! -
UcO p,
Uc (* p,
Uc(*p,
Uc(*p,

Logic L,

to s)

*p,M) =

M j >
M) >=
M) <
M) <=

char *

a
= Uc (* q

Uc (* cj,

Uc(*q!
Uc (*q,

q , enum Mode M)

M); <J^2) r-^
M); ^u^fH^f/

Tjfhe second comparing function finds the first occurrence of a short
string in a long string. I f a match is found, the function returns a pointer
to the starting character of the matching portion in the long string.

returns \ w~\ - \ p [»^h last position
flf no match is found the C0] m

function returns a NULL
pointer. NULL is defined in
<stdio.h >. n HPr M rn 1:21

TJ*he mode of comparison d cases Distinct or cases Equiv J) may be
specified as for the Compare () function.

/* Finds first occurrence of substring in superstring */
/* Returns pointer to substring in superstring, or NULL */

char * Instr(char * Super, char *Sub, enum Mode M)

char * p , *c j ;
int i ;
q = Super;
p = q + StringLen(q) - StringLen (Sub);
if (p >= q)
f

while (Q <= p)
{

for(i=0; *(Sub + i && Uc(*(q + i),M) ==
Uc(*(Sub+i),M);

if (! * (Sub + i)) return q;

match) rematch

return NULL;

6: POINTERS, ARRAYS, STRINGS 103

/ Isthay isay Ackslangbay/ Ancay ouyay
eadray itay? Erhapspay otnay atay irstfay.

{•Jackslang is a secret language sp>oken in boarding schools. It is suitably
incomprehensible when heard For the first time but easy to master once
you know the grammatical rules. There are probably many dialects of
Backslang \ also called pig Latin J); this one is remembered from school
days. Each English word is folded about its first vowel and ay is
appended \tea-$ eatay* tomato -> omatotay \ I f a word begins with a
vowel, the second vowel becomes the pivot d item -> errritayj) unless there
is no second vowel, in which case there is no fold (J itch -> itchay J). A
diphthong at the beginning of a word is treated as a single vowel (f oil •>
oiiay not iloay; earwig •> igearway not arwigeay]).

Zj \ capital letter at the beginning of a word has to be transformed
q Godfather -> Odfathergay not odfatherGay J. The u after q demands
special treatment (J Queen -> Eenquay not ueenQay]). A trailing punctuation
mark has to remain trailing (J Crumbs/ ^ Umbscray/ not Umbs!cray^%

Opposite is a header file and main program for encoding a sentence
into Backslang.

^ / you run the program it waits for you to type a sentence and
press Return. Type:

This is Backslang! Can you read it? Perhaps not at first.

TJhe program encodes and responds with:

Isthay isay Ackslangbay! Ancay ouyay eadray itay? Erhapspay
otnay atay irstfay.

Jfype another sentence and press Return until fed up with it. Stop
(I after space or new Line J) by holding down Ctrl and pressing Z (| or
whatever you do to send EOF from your keyboard J then press Return.

i jhere are checks this program fails to make. Numbers are not respected
at all: 356 comes out as 35ay6 (} can you see why?)). Punctuation marks
are coSered for only at the end of a word (J Backslang! comes out as
Ackslangbay! 5; ex punctuation mark in front of or inside a word is
treated as if it were a consonant (J "Think" becomes ink"Thay" and Joan's
becomes Oans'jay]). And a sentence can only be as long as the
keyboard buffer.

Nevertheless this small program does illustrate string manipulation using a
library' of simple home-made functions -a* and it's more fun than the
usual examples in text books, like counting lines and occurrences of words.

104 ILLUSTRATING C

/ * Header file, STRINGY.H, declaring string facilities * /
#include < stdio.h >
enum Mode { Distinct, Equiv } ;
enum Logic { eq, ne, gt, ge, It, le } ;
void Middle (char * , char * , int, in t) ;
char Uc (char, enum Mode);
int Compare (char * , enum Logic, char *, enum Mode);
void Concat (char * . char * , char *) ;
int StringLen (char *) ;
char * Tnstr (char * , char * , enum Mode);
int KeyString (char * , int (*) (char), in t) ;
int Lines (c h a r) : ^^r~^~-
int Spaces (char); (.this is a
int Punctuators (char); (header file
void StrCopy (char * , char *) ; (containing all the)
int IsDigit (char); ^string utilities
int IsVowel (char); ^ ^ d e s c r ^ ^ \ ^ t,\
int IsCap (char); (Z&ude "STRINGY.H")
int IsLetter (char); _ _ N i ? make them

^ avau

/ * Enigma encoder, English > » Backslang */
include "STRINGY.H"
int main (void)

char p [2 0] , fore [4 0] , aft [4 0] , PuncMk, * Qu;
int Cap, Length, i ;

while (KeyString (p , Punctuators, 15) != EOF)

Backslang
encoder

f
for short words, simply

append "ay "

if first letter is capital, mark Cap
true, set letter to lower case

Length = StringLen (p) ;
if (Length <= 2)

Concat (p , p, ay) ;
else

if (Cap s,IsCapf (*p))
*p += V - 'A ;

PuncMk = * (p + Length -1) ;
if (! IsLetter (PuncMk))

* (p + —Length) = NULL;
if (Qu = Instr (p, "qu", Equiv))

* (Qu + 1) « V ;
i = IsVowel (* p) ? 2: 1;
for (; ! IsVowel (*(p+i)) && i < Length;

* ^J^fmove i to first vowel
if (Qu) " ^ —

*(Qu + 1) * V ;
Middle (fore, p, j , Length-i)\^Xcopy last part and first part and
Middle (aft, p, 0, i) ; <^OZ^^ concatenate
Concat (p, fore, aft) ;
Concat (p, p, "ay") ; <3?^ append "ay'
if (.'IsLetter (PuncMk))

Concat (p, p, & PuncMk) ;
if (Cap && IsLetter (*p))

*p += 'Ar - V ; ^ X - S ^ - N ^ ,
} V i / */ the original word was

Diintf ("%S " , P) ; (capitalized, convert 1st letterj
TT k ^ ^ itol
return 0 ; yspace

if the original word
ended in something othert
' than a letter, append it

now

6: POINTERS, ARRAYS, STRINGS 105

fl \+fhen the price of an article includes value-added tax, book
keepers have to break down the price into net cost and amount of
tax. Write a function having four arguments: inclusive price,
percentage rate of tax, pointer to location for storing net cost,
pointer to location for storing amount of tax. The function should
return 0 if successful, otherwise a non-zero value. An example call
might be: n = VAT(23.95, 17.5, &Cost, &Tax)

\Jonvert the sorting program on Page 83 so that it sorts words
rather than single letters. This exercise involves handling strings. To
read the words, use KeyStringO defined on Page 99. Set up a
two-dimensional array of characters for storing the words by rows,
each row terminated with 0. To compare words, use Compare ()
d(defined on page 103 ̂ with Mode set to Equiv.

4gp exercise with pointers to functions. Recast the areas program
on Page 55 to comprise a main program and three functions, each
of which returns an area. Function Rectangle () reads two values
from the keyboard, Triangle () reads three, Circle () reads only
one. The main program reads a letter, R, T or C. It then calls the
associated function and displays the value returned. Don't use a
switch statement; set up an array of pointers to functions as shown
on Page 89.

TJfhe declaration int * x () declares a function returning a pointer
to int. The declaration double (* (* z) []) [] declares a pointer to
an array of pointers to arrays of double. What does the declaration
long int (* (* z []) []) O declare?

Tackle it verbally, or draw a parse tree, or depict the data
structure with boxes and arrows. (̂ In the second edition of
Kemighan & Ritchie « see Bibliography & are functions for
constructing and unraveling complex declarations automatically^

I j 'age 104 lists some deficiencies of the Backslang program. Improve
the program accordingly, making it resp>ect numbers and all usual
punctuation marks.

ILLUSTRATING C

V

TJhis chapter explains how to handle input and output, both
on the standard streams (J stdin, stdout, stderr]) and on
streams connected to files. The chapter explains how to
open such streams and create files on the disk.

TJhe chapter begins with the input and output of single
characters using library functions already introduced
(£ getc(), ungetc(), putc()]) . Related functions are

described (£ fgetc(), rputc() and getchar(), putchar()]).

T/he mysterious format strings used in scanf() and printf()
are at last fully described.

Qtreams are explained, and how to open and close them.
Also how to rewind* remove and rename files. These
techniques are illustrated by an example of a simple utility
for concatenating files under keyboard control.

ijfhe use of temporary files is explained

l/inally, binary files are introduced and random access
explained. These subjects are illustrated by an example of
a rudimentary data base.

GET FROM ANY STREAM,
PUT TO AHY STREAM

ljnpu\ and output of a single character has already been introduced
informally. The most common library functions are explained on this
double page. All are defined and summarized in Chapter 10.

int fgetc (FILE * s) ;

int getc (FILE * s) ;

int getchar (void) ; i macro equivalent
\to^getc(stdin)J

Ch » getchar() ;

yjach of these 'get1 functions returns the code value of the next
character waiting in the stream buffer, or EOF if the buffer is empty.

4^\ typical stream is stdin. This stream is automatically connected to the
keyboard buffer. You may, however, nominate any input stream that has
been created and connected to a file as described on Page 116. For
example:

FILE * MyStream;
MyStream = fopei
i » fgetc (MyStream) ;

fopen ("MYFILE", V f) ;

y*he return value, i , is of type int as shown by the prototypes above.
Fhe following coerces the return value to type char:

char c ;
c = fgetc (stdin) ;

lyut this may cause trouble. Suppose your implementation treats type char
as a one-byte signed integer. A variable - /2£ -> +127
of this kind can store any ASCII
character (f value 0 to 127]) but cannot (Bit
properly handle characters with values
128 to 255 because these would demand a 1 as bit 0. This is the sign bit;
setting it to 1 would make the variable negative.

Qorne C compilers offer a global 'switch' by which to change the
interpretation of type char to a one-byte unsigned integer, allowina
correct interpretation of character values in the range 0 to 255 (| typical
of a personal computer \ But for the sake of portability it is wise to
leave this switch alone and to treat characters as type int in all input
operations.

ILLUSTRATING C

4w^SI C has facilities for handling characters that need wore than eight
bits to encode them. They are called 'multi-byte characters'. The Kanji
alphabet illustrates a typical requirement for multi-byte characters. This
book does not deal specifically with them.

int fputc (int £, FILE * s) ;

int putc (int c, FILE * s) ;

int putchar (int c) ;

Ifunction*,

f macro based on fputc ())

macro q
to putc(c, stdout)

'A' is equivalent to (int)65]

yjach of these 'put' functions places the character corresponding \o code
c onto the nominated stream. Each function returns c if successful,
otherwise EOF.

TJypica! streams are stdout or stderr. Other streams may be nominated
and connected to files as described on Page 116. For example:

FILE * YrStream;
YrStream = fopen ("YRFILE", "w") ;

f he first parameter is of type int, implying that if you provide a value
type char, the value will be treated as type int on transmission.

fputc ('*', YrStream) ;
fputc (241, YrStream);

OK outside ASCII char range

int ungetc (int c, FILE * s) ;

char Ch;
ungetc (Ch, stdin) ;

Tjhe function puts any character c on the front of the nominated input
stream such that the next fgetc() ({ or getc()]) to nominate the same
stream will pick up character c.

Tjphis function is intended for use in cases where you cannot know if
you have finished reading one item until you have read the first
character of the next. You can then 'push back' this character, making the
keyboard buffer appear as though the character had never been read
from its stream. See the example on Page 99.

n't try to 'push' any more than one character on the front of a
stream. The function returns EOF if unsuccessful.

7: INPUT, OUTPUT 109

tnt f printf (FILE * , const char * , . . .) ;

TJhis double page defines fpr int f() which sends formatted output to a
nominated stream. The 'specifiers' needed are common to all library
functions having the letters 'printf' in their name: printf(), sprintf() etc.

destination stream
e.g. stderr

also p
(implementation

dependent)

ispacejlgnore if + is also present, otherwise precede a negative
K~-^*+-^ number with a minus sign, a non-negative number with a

space.

Left justify, then pad rightwards with spaces (i absence of a
minus sign means right justify and pad to the left])

+ Precede the number with + or -

Print values coded e, f, g with at least one decimal place
(![e.g. i0.0 J) Prefix 0x to values coded as style x; prefix 0
to values coded as style o.

Leading Print a leading zero (f but ignore this flag if a minus flag is
also present j)

width Minimum field width expressed as digits, e.g. 12 (} wider values
are not constrained to this width j)

* Signifies that width is specified by an int argument preceding
the argument that provides the value to be printed. The
following program displays one cycle of a sine curve:

110 ILLUSTRATING C

#include < stdio.h >
#include < math.h >
int main (void)
{

int i ;
double rad = 3.141593 / 180;
for (i = 0 ; i<=360; i+=20)

fprintf C stdout, "\n%*c", (int) (sin (i * r a d) * 35+ 40) , V) ;
return 0;

precision

Length

\

i , d
u
o
x
e
f
9
X,E,G

Number of places after the decimal point expressed as digits;
e.g. 2. In the case of a string, precision expresses the
maximum number of characters to be printed. The asterisk
works in the same way for precision as it does for width.

The type of each numerical argument must be compatible
with its associated style code, optionally modified by h, L or
L, as defined in the following table, e.g. Le signifies a long
double to be printed in scientific format.

code (styie)

d, i, n
e, f , g

o , u , x

unmodified

int
double

int

h

short int
-

unsigned
short int

L

long int
-

unsigned
Jong int

L

_

long
double
-

Decimal integer e.g. -123
Decimal integer, unsigned e.g. 123
Octal integer, unsigned e.g. 777 ({ 175 decimal J)
Hex integer, unsigned e.g. la (f 26 decimal D
Scientific format e.g. -\.12>e&&2
Decimal number e.g. -123.05
In style e or f, whichever is the shorter
These specify the same forms as x, e, g respectively, but
any letters involved are printed in capitals (f if code x
produced ff2a, code X would produce FF2A J)
Single character
The associated argument points to a string. Print the entire
string, extending field width (J if necessary j) to accommodate.
The associated argument points to an int variable to which
the current count of printed characters is sent:

int m;
fprintf (stdout, "l23456%n", &m) ;
fprintf (stdout, "=%i" , m) ;

123456=

TJfhe sequence of arguments must match precisely the sequence of
specifiers in the string. When the type of an argument fails to match its
associated specifier the result is either crazy or non-existent.

7: INPUT, OUTPUT 111

char * fgets (char * , int, FILE *s) ;
int sscanf C const char * , const char * , . . .) ;

jxamples in this book show input from the keyboard via scanf () . That is
not a practical way to read data. I f the item you type on the keyboard
does not match precisely what scanf () has been told to expect, scanf ()
evokes mayhem by ignoring the item. So if you really need the extensive
scanning facilities offered by scanf () it pays to use them under control
of sscanf () (j[string scan format]) as described below. Do not use
scanf () for practical programs.

^ o use sscanf () with keyboard data, first input a line as a string. The
easiest way to do this is oy gets () (j[get string J).

char p [80] ; *q
fflush (stdin) ;
fgets (p, 80, stdin) ;

\ ^ ^ . ^*^ J*>^ 1 as a buffer

[junction fgets () , when called, reads from the keyboard buffer into the
string pointed to by the nominated pointer (J[p in the example shown])L
Reading terminates on new line. The new-line character itself is stored with
the string. ' \0' is automatically appended.

lj\ is up to you to make the string buffer long enough (j[typically 80]).

£ | scan the string using sscanf () . I f things go wrong you can scan
again and again.

n = sscanf (p, "%c ", & Chr , & Nmbr) ;

address of objects
matching their

respective specifiers

\fr\\e nothing in the format string except
spaces and tabs (J which are ignored D
and specifiers. Other characters in the
format string would be expected to match
corresponding characters of the input
string &z and Murphy's Law says they
wouldn't.

specifier
space
tab

112 ILLUSTRATING C

specifier} % * digit

t
also p

(implementation
dependent)

skip The characters associated with a 'skip' specifier are read from
the keyboard buffer, interpreted according to the specifier,
then discarded (? % * i as the first specifier would cause the
first item from the keyboard to be treated as an integer, then
skipped])•
You may specify a field width beyond which the next specifier
takes over (jj[456 processed by %2i would be int 45, leaving 6
to be resolved by the next specifier in the string) .

pointer The F or N signifies a 'Far' or 'Near' pointer to override the
default format. (f This is a matter of particular implementations
and is beyond the scope of this book. Not an ANSI feature.^)
The input string is encoded according to its associated letter,
optionally modified by h, I or L, and coerced to the type of
the receiving variable as tabulated below \e.g. hi = short int J

width
(max)

Length

basic
code

d,i,n
e,f,g
o,u,x

Length modifier
unmodified

int
float
unsigned int

h
short int

unsigned int

L
long int
double
unsigned long

L

long double

d Decimal integer e.g. -78

i Integer: decimal e.g. -78; octal e.g. 077; hex e.g. 0xla

e,f,g Decimal number e.g. 0, -12.3, +L2E-6

u,o,x Unsigned decimal, octal, hex integer respectively

c %6c reads next 6 characters (j[including whitespace J) and
stores them as an array from the given address. \<ti is not
appended %c implies %lc.

s %7s reads non-whitespace characters sequentially and stores
them as a string from the given address. The string is
terminated by '\0f on meeting a whitespace character or
achieving the count, whichever happens first. %s implies %bigs
where big is a large number, implementation dependent.

n Integer count of successfully read characters prior to meeting

7: INPUT, OUTPUT 113

TO USE WHERE sscanf()
IS UHHECESSARILY CLUMSY

gets() and scanf() is a clumsy way to handle keyboard input if
your need is to read only simple numbers and words. How often do you
need to read numbers in scientific format? Or in octal or hex? I f the
answer is 'Often!' use sscanf () . Otherwise read on.

l^ecide what characters are to behave as terminators. Typically these are
space* tab and new Line* but you might wish to add comma* colon*
semicolon It depends on the kind of program you are writing. Specify
your chosen terminators in a function having the form described on
Page 98. Assume the one called Punctuators () for the example opposite.

Up your program, get the next item by a call to GetNext(). It does not
matter what sort of value you expect \ the person at the keyboard may
have typed it wrongly anyway; you simply cannot know what you may
get and have to deal with.

£J[ow consul! the return value of GetHexL This value tells you what was
found in the keyboard buffer as far as the next terminator:

0: neither number nor name
2: a decimal number

l : a whole number
3: a name

4f4 'name' is here defined as a string of letters d(and optionally digits])
that starts with a letter. Underscore is not included; modify IsLetterO on
Page 100 if you want it to be.

4jl\ numerical result is stored in a variable of type double,

- i = GetNext (p , & m) ;

what it found'I
- not number\
or name

1 - integer
2 - real
3 - name

EOF - error)

Assuming tab, space, newline &
semicolon as terminators, five calls
to this line would produce results
as follows: ^c^^

all
*P ^{terminated'} m

(with \0]

address of a
double to hoid

value if
numerical

1
-1234 ; - 1 2 3 4 . 0 ; H2SO4 Me4$; 2 B | | ! 2 B1

1
2
3
0
0

-1234
-1234.0
H2SO4
Me4#
2B||!2B

-1234.000000
-1234.000000
0.000000
0.000000
2.000000

4 1 call to GetNextQ says:

'Get the next item from the
keyboard and show me what kind
of item it is '

114 ILLUSTRATING C

int GetNext (char *p, double *n)

int Status;
double Frac = 0 ;
char Sign, * r ;
enum { string, integer, decimal, name } ;
Status = KeyString X p» Punctuators, 15);
if (Status != EOF)

the four possible
values of Status •

'Ignore characters after)
the 15th

Sign = (*p
* n = 0.0 •

'-') ? *prNULL;
point to char after ±

for (r = Sign ? p+l: p; IsDi(jit(* r) ; ++r)

if (V r^* - *) 1 0 +

for (++r , Frac=l; IsDigit (*r) ; ++r
*n += (* r - V) / (Frac *= 10) ;

if (Sign == '-')
(*n) *= -1.0;

if (! * r)
Status = Frac ? decimal : integer;

else

if (IsLetter (*p))
while (IsLetter(*p) || IsDigit (*p))

Status

starts with Letter and comprises
Letters & digits

p
! * p ? name : string;

return Status;
lyelow is a driving program with
which to test GetNextCX

include "STRINGY.H"
int main (vo id)

char w[80] ;
double m;
int i ;
printf ("\n");
while (l)
{

i = GetNext (w, &m);
if (i == EOF) break;
puts (w);
switch (i)
{

case 3: printf ("
case 0: printf ("
case i : printf ("
case 2: printf ("
default: printf ("

simple driver to
demonstrate

GetNext c ; ,

infinite Loop; enter EOF to get out

Name ") ; break;
String ") ; break;
Integer ") ; break;
Decimal ") ; break;
Chaos M) ;

printf (" Value =%Lf\n", m);

return 0;
try this with the input

\ l i ne shown opposite/

7: INPUT, OUTPUT 115

AND
i j he standard 'streams' are:

• stdin standard input stream (J from keyboard D
• stdout standard output stream (f to screen })
• stderr standard error stream (f to screen J

If OKI may define any number of other streams connected to various
devices \ such as printers and plotters]) and to 'files' on disk. This book
deals only with disk files. The means of attaching other devices depends
on the implementation, but the concept of a 'stream' remains independent
of the implementation; it should be possible to direct an input stream from
any input device, an output stream to any output device.

FILE* fopen (const char * , const char *
FILE* freopen(const char * , const char*, FILE *

stream may be opened and connected to a file using fopen () .

Filename

stream = fopen (Filename, mode) ;

freopen (filename, mode, stream) ;

name
redirect from stream to Filename

'ej. freopcn ("PRNFILE.DOC", V \ stdout)

ijfhis name nominates a stream in the same manner as
stdin nominates a stream. The name must have been
declared as a pointer to FILE, where FILE is a type
df just as int is a type D defined by C. For example:

> \

FILE * MyStream

name"

I j he allowable syntax of name depends on the
implementation. In DOS, for example, lower case and
corresponding upper case letters are equivalent and the
path is punctuated by backslash. Examples are:
''MYFILE.DOC" and "C:\\MYDIR\\MYFLE2.D0C" (J where \ \ is
an escape sequence to represent a single \ JL

if ou may express Filename as a pointer to a string. For
example, in a DOS environment:

char *p = "C: \\MYDIR\\MYFILE.DOC";
MyStream = fopen (p, "w") ;

116 ILLUSTRATING C

mode \ " r

w

a

b

+
• v1

• "wb"

• "wb+"

may express mode as a pointer to a string:

char * q = " w + b " ;
MyStream « fopen ("MYF1LE", q) ;

mode
symbol

r

w

a

b

+

« significance of mode symbols &>

if nominated file exists

open file for reading

open file for writing

open file for appending
(J writing on the end D

if file doesn 't exist

error \ return NULL

create file, and open it for
writing

declares file to be 'binary1 *& as handled by f readO and
fwriteCX The absence of b implies a formatted text file

permits both reading and writing « using fseek () and f tell (),
or using fgetpos() and fsetpos(). Or just by rewind ()

in* fclose (FILE *) ;

\^/hen you have finished with a file you should close it. The exit()
function demonstrated overleaf serves to close all open files when
obeyed; in such a case you do not need fclose () . The function returns
0 if successful, otherwise EOF.

i = fclose (stream) ;

void rewind (FILE *) ;

a file has been written, or added to, it must be rewound before
it can be read This can be achieved by resetting the file pointer, as
explained later, or by rewind().

reirewind (stream) ;

Ijhe rewind function automatically clears error indicators \ see later J).

in* r e m o v e (const char *) ;

Xfx may remove $ delete j) an existing file, but not while the file is
open. Close it first. The function returns 0 if successful, otherwise EOF.

i = remove ("MYFILE.DOC") ;

7: INPUT, OUTPUT 117

int rename (const char * , const char *) ;

y file, open or closed, may be renamed

rename ("ELDERLY", "SENIOR") ;

V^^^new name\

^ :ause a file name may define a path, rename () may be used to
Tnove' a file from one directory to another. The following rudimentary
utility achieves this in a general way:

#include < stdio.h >
int main (void)

char o\d[Q0\ new[80];
printf ("Enter existing path\n> ");
f gets (old, 80, stdin);
old[strlen(old)-l] = V ;
printf ("Enter new path\n> ") ;
fgets (new, 80, stdin);
new [strlen (new) -1] = ' \0 f ;
if (! rename (old, new))

printf ("Success ! \n ");
else

printf ("Try again ! \n ");
return 0;

f store this fiLe as
S ^ MOVER.C

Mover
Enter existing path
> C:\MINE\LETTER.DOC
Enter new path
>C:\Y0URS\LETTER.DOC
Success !

int f error (FILE*); int feof(FILE*); clearerr (RLE *) :

I jvery file stream has two indicators^ initially clear (J[zero)):

• error indicator
• end-of-file indicator

l\f something goes wrong during an attempted read or write, the error
indicator for that stream becomes non-zero and stays non-zero until
specifically cleared by clearerr() or rewind () . An attempt to read
beyond the end of a file causes the end-of-file indicator to be set
non-zero, btrt this indicator clears itself before every attempt at reading.

If ou can interrogate either indicator, and re-set both to zero, using the
following functions:

i = ferror (MyStream) ;

i = feof (MyStream) ;

clearerr (MyStream) ;

rewind (MyStream) ;

(interrogate error
indicator

interrogate
^end-of-file indicator)

feither function
sets both

r indicators zero

118 ILLUSTRATING C

A UTIUTY FOR CONCATENATING NOMINATED FILES
TO ILLUSTRATE Fopen(), rewindO, FcLose()

TJhis program is a rudimentary utility. To run it, type CATS, then
nominate the file you want to be the concatenated file, then nominate the
files to be copied into the concatenated file. For the concatenated file
you may nominate a new file (j[and let the utility create it D or an
existing file (} and let the utility wipe out its current contents)).

CATS NEWFILE AFILE BFILE CFILE ^commandx

line

name of
utility

•name of results file
f (typically a new name Jj

*any number of names of existing files to
r Se copied contiguously into the new filef

/ * MAKE NEW FILE FROM CATENATION OF LISTED FILES * /
•include < stdio.h > / ^ i ^ ^ r ^ 7 y ^
•include < stdlib.h > N ^ ^ J i ^ ^ - > - ^ 1 is

int main (int argc, char * a r g v [])
(if file doesn 't exist \
> it is created; if file \

J^kexists it is rewoundj
^ for overwriting

FILE * p , * q ;
int i , ch;

if (argc > 1)

if (p = fopen (a r g v [l] , "w + "

for (i = 2 ; i<argc;

if (q » fopen (a r g v f i] , " r "))
while ((ch = getc(q)) != EOF)

putc (ch, p) ;
fclose (q) ; ^—> r^Y^Z^

^-^ close this 4
read file .

, copy reac
file to

write file.

else
fprintf(stderr, "\nlgnore: %s not found", argvfi]);

rewind write file k
for reading ,

copy rewound ̂
\ file to screen

}
else

}
else
{

rewind (p) ;
fprintf (stdout, " \n") ;
while ((ch * getc (p)) != EOF)

putc (ch, stdout) ;
fclose (p) ;

standard error stream
made available by C

fprintf(stderr, "\nAbort: %s couldn't be opened", a rgv f i]);
exit (l) ; _ _

similar to return (l) but

fprintf(stderr, "V1N0 arguments given for %s\n", argv[0]) ;
exit (2) ;

return 0;

7: INPUT, OUTPUT 119

are FILE * tmpfile (void) ;
char * tmpnam (char *) ;

\fo\x can create a temporary file which has no filename; just a name
to identify its stream. The mode of opening is "wb+" z& in other words
you may write to the temporary file and read from it in 'binary' form.
Binary form is explained opposite.

FILE * Brief Stream;
BriefStream = tmpfile ()

void parameter;
Leave empty

i j he nameless file is automatically removed when you close its stream:

fclose (BriefStream) also removes
* temporary fibe\

IXf you need a temporary name for a file, function tmpnam() will
provide a string guaranteed not to clash with the name of any other file.
You may give tmpnam() a parameter pointing to an adequately long
array in which to put the unique string. The minimal length to allow ror
this string is given by the constant L_tmpnarn, defined in < stdio.h >.

#indude < stdio.h >
int main (void)
f

char RumpleStiltskin [L_tmpnam] ;
tmpnam (RumpleStiltskin) ;
printf ("My name is %s\n", RumpleStiltskin) ;
return 0;

l\f you omit its argument, tmpnam () returns a pointer to a static array
created internally.

char * MayFly = tmpnam();
MyStream = ropen (MayFly, "w+b") ;

fclose (MyStream) ;
remove (MayFly) ;

it is your)
7responsibility to\

remove the
named file

Tjfhe name returned by tmpnam () may be associated with a new file
using fopen(). When the stream to that file is eventually closed, the file
itself remains in the file directory. I f you want to get rid of it, use
remove () . The only files to be removed automatically on closure of the
stream are the nameless files created by tmpfile().

120 ILLUSTRATING C

siz.e_t fwr ite (const void * , size_Lsi2:e_t»FlLE*)i
size_t Pread(vocd *, size_t, size_L RLE *);

text4JJ1 streams so far illustrated are streams of characters, or text. A
stream comprises lines, each line having zero or wore characters
terminated by a new Line character. No matter how the local hardware
treats such a file, the C programmer may use library functions (J getc(),
scanf(), printfO etc.]) on the assumption that the file is modelled as just
described

\ you need to store a great many numbers in a file, and subsequently
read them back for further processing, it would be wasted effort
converting, say, the binary integer 01111111111111111111111111111111 to its decimal
equivalent of 2147483647 for filing, then subsequently converting 2147483647
back to 01111111111111111111111111111111 for processing in memory. In doing this you
might drop or pick up bits wherever binary numbers do not have precise
decimal equivalents. So the C library provides functions for writing and
reading a stream of bytes regardless of what they represent. As long as
you remember what you wrote to file you can read it back without
conversion, precisely as it was.

binary streams are especially useful for filing data structures such as
the personnel records defined on Page 127. The size of any such
structure is given by sizeof(type) where type is the type of the
structure (| e.g. sizeof (struct MyStruct) J).

n * fwrite (

(number of]
items

actually
X transferred}

pointer \ r number
to K > of bytes

suitablej S in a
buffer] A record

n « fread (b, size, count, stream

open a stream
to a temporary

file record with 36 visible
characters

#include < stdio.h >
/* JUST A DEMONSTRATION */
int main (void)

FILE * BinStream = tmpfile () ;
char PrintBuf [40];
char Record [] = "You'll never guess where I've been'Nn"-
mr oize = 36 + 1: -=•—•* <^<—^—^—^-—- ' '

for the
fwrite (Record, Size, l, BinStre^TT
rewind (BinStream);
fread (PrintBuf, Size, l, BinStream);
printf ("%s\n", PrintBuf);
fclose (BinStream);
return 0;

1 Record
out to BinStrearn

7: INPUT, OUTPUT 121

int fseek (RLE * , long, int) ;
long ftell (FILE *) ;

In the previous examples the files that have been written are rewound
before being read. But access to a file can be more selective; you can
locate a conceptual 'file pointer1 at any point in a file, then read the
record it points to, or write a record on the file starting at that position.
The pointer is located by the function fseek () and you can discover its
current position using ftell(). (J Functions fsetpos() and fgetpos() serve
a similar purpose. 1) /T^^\ /-^"^

r v * S long / ^ int

(stream, offset, origin) ;

yfhe origin may be located at the start of the file (j[at its first byte])
by SEEK_SET, or at the end of the file (f one past its last byte) by
StEK_END. The origin may be located at the current position of the file
pointer by SEEK_CUR. These three constants are defined in < stdio.h > as
an enumeration: JTC^ /TO r^

enum f SEEK_SET, SEEK_CUR, SEEK_END } ;

4f may use equivalent integers or provide a less clumsy enumeration
such as enum f start, current, end } ;

ijfhe offset locates the file pointer relative to the origin. The offset is
expressed as a number of bytes and may be positive or negative:
fseek (|f MyStream, 13, 0 ^ is depicted below:

i 2 3 4 6 7 8 9 1112 13 14 15 16 17 18 19 20 21 22

offset

I jhe next fwrite() or f read() starts with the byte at the file pointer.

y^he offset for a text stream should be given either as z.ero or as a
value returned by ftell(). The value returned by ftell() is the number of
bytes from the start of the file to the file pointer.

Location
pointer

yfrorr? start
I = ftell (stream);

122 ILLUSTRATING C

TO ILLUSTRATE forite(), fread(), fseek()
((BINARY I/O WITH RANDOM ACCESS FILE }

T/he following is a primitive database for names and addresses. The
program asks for a surname, then an address, then another name and
address, and so on until you enter EOF (J Cfrrl + Z in DOS J). The program
then asks for a surname. When you enter one, the program searches the
database it has created and prints a name and address. I f records have
the same surname, all associated addresses are printed. To stop the
program asking for names, enter EOF from the keyboard.

/* PRIMITIVE DATABASE */
•include < stdio.h >
•include "STRINGY.H" prototypes for

utilities listed
on Page 105

int main (void)

char p [20] , q [60] , r [2 0] ;
long i , Point;
FILE * Dbase « fopen ("DBASE.BIN", "w + ") ;

/* PART ONE: INPUT DATA */
for (Point = 0; ; Point += 80)

printf ("Name?\n> ") ;
KeyString (p, Lines, 19) ;
if (feof (stdin))

f break;
printf ("Address?\n> ") ;
KeyString (q, Lines, 59) ;
fwrite (p, 20, i , Dbase) ;
fwrite (q , 60, 1, Dbase) ;

Name?
> Benson
Address?
> Mr. A.J. 2 Kingfisher Drivej
Name?
> Williams
Address?
> Mrs. T.E., 7 The Cottages
Name?

offsets jump
in 80s

/* PART TWO: INTERROGATE */
for (; ;)

printf ("Who?\n> ") ;
KeyString (r, Lines, 19) ;
if (feof (stdin))

break;
for (i = 0 ; i< Point ; i+=80)

fseek (Dbase, i , SEEK_SET) ;
fread (p, 20, 1, Dbase) ;
if (Compare (r, eq, p, Equiv))

fread (q, 60, 1, Dbase) ;
printf (ff%s\n", q) ;

}
return 0;

Who?
>Benson
Mr. A.J. 2 Kingfisher Drive
Ms. P. 97 Wentworth Avenue

Who?

etc.

7: INPUT, OUTPUT 123

fi \+{r\\e a function, with fpr intf() at its heart, to tabulate numbers.
Let its prototype be:
void Tabulate (double Value, int Line, int Field, int Places) ;

Value identifies the next value to be printed
Line is set 0 if printing on the same line, 1 if on the next line
Field is the number of character positions in the complete field
Places is the number of places after the decimal (f zero signifying
none, and no point \
Tabulate (234, 0, 10, 3) would print the result on the same line
as the previous number, in the form $55234.000 (J where s
represents a space j) . Tabulate (234, 0, 10, 0) would display
ssssssslte as an integer.

With this simple function you can produce complex and elegant
tabulations.

\JJonvert one of your C programs that employs scanf() to using
gets() followed by sscanfQ. Consult the return value on each call
to sscanf(). Display an error message if the number of matching
specifiers is wrong; arrange for a remedial line to be input by gets().

(jonvert another C program to using function GetNext () (jf defined
on Page 115]) . You should find error conditions much easier to
handle than with gets() and sscanfC).

TXhe concatenation utility on Page 119 is badly designed I f you
nominate an existing file to receive the information, you lose the
current contents or that file without further warning. Rectify this
deficiency. Make the utility ask if you really intend to lose the
current contents of the nominated file; offer the chance to retract.

4|mprove the database program on Page 123. The possibilities are
endless; man-years of effort are expended in producing saleable
address-book programs, but attempt the following minimal
improvements. Make it possible to keep names and addresses in a
disk file on leaving the program, and make it possible to add
names and addresses in subsequent runs. Make it possible to delete
and modify names and addresses.

124 ILLUSTRATING C

ijfhis chapter explains the concept oF a structure as a
collection of variables, this collection including nested
structures if desired.

4^4 structure can be handled in much the same way as a
variable; you can copy a structure, assign to a structure,
take the address of a structure with &, access the
members of a structure. You may declare arrays of
structures. You can nominate a structure as a parameter
of a function or write a function that returns a structure.

TJhis chapter introduces structures by analogy with arrays.
The operators for accessing members are defined and
their use explained Concepts are illustrated by an example
of a library list in which to search for a book if you
know its title or can remember only part of its title.

(^/nions and bitfields are introduced (£ a union is a
structure in which members share storage space]).

/jjaving described structures and unions it is possible to
define, fully, the syntax terms type and declaration. The
allowable syntax or declaration differs according to context,
so a separate diagram is drawn for each context.

1/inalfy the chapter explains the idea of stacks and gives
an example of their use in converting simple algebraic
expressions to reverse Polish notation.

4 ° f information handling is about updating and sorting lists of
names and addresses. With each name and address may come other
information: an amount of money owing, a list of diseases survived, a
code indicating the subject's purchasing power or likelihood of signing an
order. In short, information comes as large sets of structured sub-sets.

I/or a list of names and addresses you could define an array of
two-dimensional arrays (j[in other words a three-dimensional array ^ as
depicted below:

c h a r X p e c [i 0 0] [4] [2 0] ;

Xpec
101

an array
of 2-D
arrays

[99]

(each string ̂
\ terminated

...[197

R
M
2
H

U
R
A
0

S
.

3
U

s E

J
K
D

L

A
B

S

L
C

M

D

\0

K
M

I

*
E
T

L
C H

R 0 W

r
M
4
c

w
R

A

T
S
T

r

T
.
T
F

C

L
0

H
T
T
R

I
A
N
D

T
8
G

\0
I T

R
H
I

A
D

\0
G E

4 f o u could use this scheme to sort names
and addresses on various keys (j[surname,
town etc.]). You might display the complete
list of names and addresses as follows:

for (n « 0\ n<{00\ ++n)
for (line = 0\ line<4; ++line)

printf C"\n%s", Xpec [n] [l i n e]) ;

RUSSELL
MR. JACK
243 KENNEL ROW
HOUNDSDITCH
TWITCHIT
MRS. TABITHA
4 TILING RIDGE
CATFORD

Î Jut this scheme has deficiencies. Arrays are too uniform; every item
(j surname, forename, house and street, town & must have the same
amount of storage allocated to it. And numbers, and sums of money,
have to be stored as character strings instead of integers, hence cannot
by used directly as sorting keys.

TJhese deficiencies can be overcome using a structure instead of a
two-dimensional array. You may define a shape to suit any particular
collection of entities to be stored. A structure may incorporate any type
of variable. It may also incorporate other structures (J nested structures)).

TJhe address book above is re-defined as an array of structures
opposite.

126 ILLUSTRATING C

r keyword
struct
f

char Surname [12] ;
char Forename [20] ;
int House ;
char Street [13] ;
char Town [15] ;

Xpec [i00] ;

Xpec

'Members'
of structure
defined

'an array
of 100

- structures«

.Surname

.Forename

.House

. S t r e e t

. Town

LIU

^ussjyJLl,^ , , J D9]

Mr,., .Jack.X0 1
T4T~[m

K.e.n.n.e.l, .Row,^ , | M

HoundsditchN? , , 1

C i] .Surname

.Forename

.House

.Street

. Town

cm
1 T.wi.t.c.hi.W , , 1 ra

14 1 m

l^il^ng, R.idfleilwj
\CAaLtjfLqrd\® J

displaying the list involves the dot operator (j[full stop j) for accessing
each member of the structure.

This is
'CatFord' -

check on picture
above

for (n=0; n < \00\ ++n)
f

printf ("\n\n%s, %s",Xpec [n] . Surname, Xpec [n] . Forename) ;
printf (f \ n \n% i , %s ", Xpec [n] . House, Xpec [n] . Street) ;
printf ("\n\n%s ", Xpec[n].Town) ;

Russell, Mr. Jack
243 Kennel Row
Houndsditch

Twitchit, Mrs. Tabitha
4 Tiling Ridge
Catford

8 : STRUCTURES, UNIONS
127

AND UNIONS

IJere is a declaration of a typical shape of structure along with the
definition of two objects, Si and S2, or the shape declared.

struct

char Name
int Number

Sl, S2 ;

[20 1;

Si Namp 1 1

.Number| |

S2 .Name | I
.Number| |

v^bjects Si and S2 may be handled in some respects like scalar variables
and arrays. You may do the following:

• Initialize the members of
structures in the manner of
initialized arrays

• Declare structures static,
extern, auto, as described on
Pages 136 to 137. An auto
structure may be initialized by
assignment.

• Access the members of a
structure in much the same
manner as variables

• Copy or assign an entire
structure as a unit

• Take the address of a
structure

• Define functions that have
structures as parameters (jf this
depicts the invocation))

• Define functions that return a
complete structure fl[this
depicts the invocation j)

usize must be
declaredstruct

i
char Name [20] ;
int Number ;

}
51 = { "Mo Niker", 123 } ,
52 = { "Pert Ronymic", 987 } ;

n = Sl. Number;
Sl. Number = S2
S2.Number » n

S2 = Sl ;

p = & Sl ;
printf (" % i f

n = Fun (Si

i

9

1)

. Number;

(* p).Number) ;

Sl = OtherFun ("Jones" , 33) ;

2/ ou may not compare structures logically if (Sl
f

S2)

i j h e above rules apply to unions as well as to structures.

128 ILLUSTRATING C

AND

J of the do\ operator for access to a member is demonstrated by
an earlier example, part of it reproduced below:

for (n = 0 ; n < 100; ++n)
f

printf ("\n\n%s, %s", Xpec[n]. Surname, Xpec[n]. Forename) ;
printf (" \n \n%i , %s ", Xpec[n]. House, Xpec[n]. Street) ;
printf ("\n\n%s ", Xpec[n].Town) ;

ijfhe essential shape of each access expression is:

Xpec [n] .Town;

Russell, Mr. Jack
243 Kennel Row
Houndsditch

member name

instead of writing Xpec[n] as the reference to the structure we may
write:

* (Xpec + n)

TJfhis demonstrates pointer notation as an alternative to array notation as
described on Page 84. So the access expression may be written:

^^—^—^—v-^ (* (Xpec + n) ,
f Low precedence djj V* A high 'precedence)

i f he outermost parentheses are essential because the dot binds more
tightly (J has higher precedence J) than the asterisk. Without the outermost
parentheses the expression would be treated as *((Xpec + n).Town)
which signifies a pointer \o a member of an impossible object.

T j o avoid the clumsiness of the dot expression, C provides the arrow
operator -> (J minus sign followed by greater than J). p->a is short for
(* p) . a So the access expression may be written:

(Xpec + n) -> Town
[reference to

object
\ member name

where the parentheses are needed because -> binds more tightly than +
(} without them it would say Xpec + (n -> Town) J) .

TJhe fragment of program at the top of the page may be re-written as:

for (n=0; n < 100; ++n)
{

printf ("\n\n%s, %s", (Xpec+n)-> Surname, (Xpec+n)-> Forename) ;
printf (" \n \n%i , %s ", (Xpec+n) ->House, (Xpec+n)-> Street) ;
printf ("\n\n%s ", (Xpec+n) -> Town) ;

8: STRUCTURES, UNIONS
129

i j he full syntax for declaring an 'aggregate' (J structure, union,
enumeration]) is defined on pages 136 and 137. It is possible to arrange
such a declaration in several ways, three of which are illustrated below.

make
struct MyTag f int Ego; char Sweet[16]; } ;
struct MyTag a, b;

a ^declare „ ,_—.

n the above arrangement a type of structure is defined and given a
tag. Subsequently ft not necessarily on the next line]) objects of the same
type may be declared by reference to the tag. These objects may then
be used much like variables: initialized, copied, pointed to, used as
arguments of functions and returned by functions.
TJferminology: Excessive use of the word 'type' causes confusion. I use
the synonym 'shape' to avoid ambiguity where 'type' applies to a structure
or union. Thus: A structure of such and such a shape comprises objects
of such and such types! /<~^/~^\

-& define
struct f int I d ; char Ripe[35]; } c, d ;

TJfhe second arrangement is shorter than the first, and establishes the
shape of objects c, d in the same manner as a, b. But with the first
arrangement you may subsequently declare more objects of the same
shape: ^

s t r u c t M y T a g J e , f [G] , *
f struct foLLowed by a tag constitutes a shape

(in other words a type)

lA\ is impossible to do likewise with c, d in the second arrangement
because there is no tag, hence no shape, to which to refer.

If ou can declare an alias (} synonym J) for a shape using the keyword
typedef:

typedef (struct MyTag j MyType

or wore imaginatively:

typedef struct {int I d ; char Ripe[35];} YourType;

after which you may declare objects as follows:

MyType r, s [6] , * t ;
YourType u, v [3] , * w ;

rMyType is now an
alias For 'struct MyTag '

alias (J via typedef]) is neat and avoids the need for a tag.

ILLUSTRATING C

SEARCH FOR A BOOK, OR SET OF BOOKS,
IF YOU REMEMBER ONLY PART OF A TITLE

•include "STRINGY.H"
typedef struct

char Title [4 0] ;
char Author [3 0] ;
char Publisher [30] ;
int Year;

} Record_Shape;

STRIHGY.H is listed on Page 105

Search on fragment: fortr

Title: Illustrating Fortran

Author: Donald Alcock

Publisher: Cambridge University Press, 19 82 i

Search on fragment:

static Record__Shape List [] =

{"Illustrating BASIC", "Donald Alcock",
"Cambridge University Press", 1977},

{"Illustrating Computers", "Colin Day & Donald Alcock",
"Pan Information", 1982},

{"Illustrating Fortran", "Donald Alcock", List
"Cambridge University Press", 1982},

{"Illustrating Super-BASIC1, "Donald Alcock",
"Cambridge University Press", 1985},

{"Illustrating BBC-BASIC", "Donald Alcock", / t i l }
"Cambridge University Press", 1986},

{'Illustrating Pascal", "Donald Alcock",
"Cambridge University Press", 1987},

{"Illustrating C", "Donald Alcock",
"Cambridge University Press", 1992},

j ;

static int Num__Books = sizeof List / sizeof (Record_Shape) ;

int main (void)

char Buffer [4 0] ;
Record_Shape * p;
enum { Distinct, Equiv } ;

printf ("\nDatabase: Type any part of a book title to\n"
"initiate a searcn for a took or booksAn"
" (Ctrl+Z to end the session)") ;

while (1) f-I read the
{ }\ search

printf ("\nSearch on fragment: ") ;
/ ^ (seek

if (KeyString (Buffer, Lines, 40) !« EOF)

for (p = List; (p - List) < Num__Books; ++ p)

if (Instr (& (p -> Title), Buffer, E q u i O)
printf ("ViTitle: %s", p->Title
printf ("\nAuthor: %s", p->Author
printf ("\nPublisher:

Record-Shape

", p->Publisher, p->Year);

}
else

return on
^reading EOF\

return 0;

8 : STRUCTURES, UNIONS 131

STRUCTURES THAT SHARE SPACE

Ljj^ union is an aggregate similar to a structure, the difference being that
all its fields share the same storage space. Like the married couple ^
factory workers /» who shared the same narrow bed but never slept
together because he was on night shift and she on days. When you use
a union you have to remember who is currently in bed.

union Factory

char Him L
double Her
int Fido ;

(unjon^acj^rV)
enumtlieTohe

6] ;

r shape)
(type))

Worker ;
, It } Tab;

Worker

Tab

.Him

.Her |

.Fido

int 1• 1

char
i i i

double

int (2

common

(6 bytes)

C86ytes)
. . . 1

bytes)

bed 1

4J[n this example there are three fields sharing storage space. The
processor reserves enough space to accommodate the longest; in this
example the double.

l /he idea of 'Tab' is to keep tabs on the current type. I f you assign to
Worker. Him, write Tab=He; if you assign to Worker. Her, write Tab=She;
and so on. Check when you 'fetch' from a union: use a statement such
as ' i f (Tab==She) i = Worker.Her; else exi t(i) ; '

\foix may initialize a union, but only with reference to its first field. An
example, using the shape defined above, is:

"Otime" Minder

4 4 union may be nested inside a structure. In the example shown here
you could refer to the fields of the union named Nested_Object, which
lies inside the structure named Demo_0bject, as:
Demo_Object. Nested_Object. Him[l], Derno_Object. Nested_Object. Her etc.

tagj

struct Composite_Type

char Title [40] ;
union

char Him [6] ;
double Her ;
int Fido ;

} Nested_Ob jec t ;

struct Composite_Type Demo_Object;

v^nions are useful for handling large sets of entities of different sizes
Qf some int, some double, some pointers]). By expressing each as a union
you may make all entities the same size, thereby simplifying the handling
functions (J filing, chaining]). The cost of this expedient is wasted space in
unions that contain the smaller members.

132 ILLUSTRATING C

DOWN TO THE BASICS

/jLjere is an array of 52 structures representing a deck of blank playing
cards:

typedef struct

unsigned Value: 4 ;
unsigned Suit: 2 ;
unsigned InPlay: l ;

Card_Type;
static Card_Type Deck [5 2] ;

Card_ Type

Tjhe colon denotes a f bit field'. The integer after the colon specifies the
number of bits (J binary digits J) in the field. The four-bit field can
represent Ace (J 1]) through to King (J 13 j) leaving 0, 14, 15 unused. The
two-bit field represents Spades, Hearts, Diamonds or Clubs (J 0, 1, 2 or 3]).
The one-bit field is for representing the state ' not in play' or * in play'
(I 0 or 1) .

initializing the deck would be possible but laborious. The following
fragment (J in which i , s, v are of type int]) does it dynamically:

for (i=s =
for (v
f

Deck [i]
Deck [i]
Deck [i]

}

S < 4 ; ++s)
; v < 14 ; ++v)

Suit = s ;
Value = v
InPlay = 0

Ijjow does the processor arrange the storage of bit fields? In the above
example, common sense would suggest that the processor would pack
each seven-bit record into an eight-bit byte, wasting one bit per record.
Possible. But you cannot know; the method of storage depends on the
whim of the processor.

Ifou can, however, declare unnamed bit fields to create boundaries
where computers like them best 6* at powers of 2:

typedef struct

unsigned Value: 4 ;
unsigned Suit: 2 ;
unsigned InPlay: 1;
unsigned : 1;

p bring the total
to 8 bits

lyit fields are useful to programmers who work at low level <&c\ose to
the machine * ^ and best left alone by the rest of us. I f you want to play
card games there are more appropriate facilities in C than bit fields.

8: STRUCTURES, UNIONS 133

AT LAST! WE CAM DEFIHE
THE REMAIHIHG SYHTAX OF C

TJfhe syntax of scalar type is defined in Chapter 4 as :
signed

type signed
unsigned

float

long
void

short
— '---.
short
long

char

int

int

double

i j he concept of type is now extended to structures, unions and
enumerations. These are collectively termed 'aggregates/ We extend the
type diagram to include aggregates. But to make subsequent explanations
dearer we use the term shape for the extended part of type:

• struct My Tag { float f, double d }
• struct My Tag
• struct { int * p, struct My Tag }
• union f long I, float f }
• enum Boolean f True = 1, False =

lj[xamples of type or shape can be more complicated than those shown.
To prevent complexity getting out of hand, C provides the typedef facility
for declaring an alias \ in other words a synonym]) that may be used
instead of a complicated phrase:

&^ ^—v as alias M

typedef

• typedef unsigned long int Lengthy;
Lengthy a, b, c ;

alias for 'unsigned Long intj

declared unsigned Long int)

• typedef struct { double r, theta } Polar, * PqlePt ;
Polar c, d, e ; -^^^^d^el^^the^hape]
PolePt p, q ; ^^^jr^^^^^^r^l^

liP* 4 may P01^ 1° ?oLar shapes

134 ILLUSTRATING C

/£\ declaration comprises three parts: an optional storage class specifier,
a type (J or shape j), a list of declarators. For example:

static int i , Colour [3] , Fun (f l oa t) , * p ;

IJtach declarator provides a unique name. In this example the names in
the list of declarators are: i , Colour, Fun, p.

ijfhe syntax of declarator is formally defined as follows:

declarator name

(declarator) declaration^
— 9

name) ,
1 para»

• a • * p • a [3] [6] • * fun (int, int)

jp some contexts a declarator appears without a name. An example is
the prototype declaration 'double Sine(double);' where the name of the
parameter has been omitted. (J Omission is optional in this case, the
prototype may be written 'double Sine(double Angle);' where Angle is
no more than commentary. D But in type casts, and in sizeof(J when
finding the size of a type fl shape D, it is essential to omit the name. A
declarator that omits the name is called an 'abstract declarator'
(| abstractor for short]) and is defined as follows:

empty

(abstractor)

(function with two int parameters)
returning pointer to ...

y n sizeof(type-name), and optionally as parameters in a prototype, the
entity denoted type-name combines type and abstractor as follows:

type-name type

shape

alias

abstractor

• double

• int [3][6]

• struct T * as in void Fun (struct T*)

8 : STRUCTURES, UNIONS 135

SELECT SYNTAX DIAGRAM ACCORDING TO CONTEXT

4 \ function definition and the declaration of a structure employ different
symbols. The declaration of a parameter shows by its form and content
whether the function is being defined or whether it is being declared as a
prototype. So although it is possible to draw a single diagram defining the
syntax of all declarations, it is not helpful to do so. For a particular
context the general definition would not show which paths through the
diagram were permitted and which forbidden.
nn

ydere are seven separate diagrams, each defining declaration in a
different context.

GLOBAL (OUTSIDE) OBJECT

declaration extern

static

type

shape

alias

• int i ;

• struct Street {int No; char * Name } ;

• struct Street MyStreet = {10, "Downing" } ;

OBJECT IN A BLOCK
,

auto

extern

this path for tagged
shapes only

f sntiaLs, , }

declaration

register

static

• static int n = 100, k;

register for
scalar types only

MEMBER OF STRUCTURE OR UNION

declaralion type

shape

alias

declaration

abstractor

integral
* (number of bits))
—-*

expression

abstractor is for bit Reids only. It is A
mandatory for zero-Length bit fields

• char * Ref ; • struct Street MyStreet ; • unsigned Suit: 2 ;

136 ILLUSTRATING C

FUNCTION DEFINITION (ALWAYS GLOBAL)

declaratordeclaration extern

static

type

shape

alias

block

• double Sphere (double r)

return 4 * 3.1415927 * r * r * r /3 ;

block \ { declaration statement }

PARAMETERS OF A FUNCTION DEFINITION

type declarator

shape

alias

• int i • char * p • int * fn ()

PROTOTYPE DECLARATION

declaration \

V

• double sin (double) ;

extern
static

type
shape

alias

declarator

• void Fun (int i , float f) ;

PARAMETERS OF A PROTOTYPE DECLARATION

declaration

• int i

register

• char

type

shape

alias

declarator

abstractor

• int * ()

const AND volatile EXCLUDED

Tjhese definitions exclude the qualifiers const and volatile. Including them
would complicate the syntax diagrams out of all proportion to their worth.
Placement (| to the left of the entity qualified)) is depicted for const at
the foot of Page 81. The effect or volatile depends on the implementation.

8: STRUCTURES, UNIONS 137

A SIMPLE DATA STRUCTURE WITH WIDE APPLICATION

programmer's stack is a simple concept with
wide application. Stacks can be found in all
kinds of program, at system level and in every
field of application. To maintain the analogy of
a physical stack (J of bricks or trays]) we
draw the programmer's stack (} of numbers,
characters or structures]) upside down. X^*/^

4 \ stack may be created, as depicted, from an array of stackable
objects and an integer variable for storing the number of objects
currently stacked.

TJhree functions are all we need to manage such a stack:

Push ijJlace a new object on the top of the stack

Pop i jake a copy of the object at the top of the stack, then
remove the top object

Peep ' i jake a copy of the object at the top of the stack without
removing it. Send a signal if the stack was empty.

iyelow is the type definition of the shape depicted above, setting it up to
stack characters. On the right of the page are compatible function
definitions of Push, Pop and Peep. For typical invocations of these, see
the program on Page 141.

typedef struct

int pos;
char A [4 0] ;

Stack_Type ;

Tjfhe next chapter explains
how to avoid arrays (J for
which you have to specifv a
maximum height of stack J)
by using dynamic storage.

void Push (Stack-Type * q , char c)

if (q -> pos < 40)
q -> A[q -> pos++] = c;

char Pop (Stack_Type * q)

if (q -> pos > 0)
return q -> A[— q -> pos];

else
return ' \0 ' ;

char Peep (Stack_Type *q)

if C q, -> pos > 0)
return q, -> Afq, -> pos- l] ;

else
return V ;

138 ILLUSTRATING C

ILLUSTRATING THE
USE OF STACKS

4ijgebraic expressions in conventional form may be expressed in reverse
Polish notation which has no parentheses (J 'Polish' because the notation
was devised by the Polish logician Jan Lukaciewicz which only Poles can
pronounce; 'Reverse' because his original order of operators and
operands has been reversed]). As an example of reverse Polish notation:

A + (B - C) * D - F / (G + H) transforms to ABC-D* + FGH + / -

TJhe reverse Polish expression is easier to evaluate than might appear.
For example let A = 6, B = 4, C = 1, D = 2, F = 3, G = 7, H = 5 . With
these values the expression to be evaluated is:

\£f ork f rom left to right taking each item in turn. Whenever you come to
an operator, apply it to the previous two terms^ reducing two terms to one:

^ he above should demonstrate that reverse Polish notation would be
useful fo r evaluating expressions by computer. So how do you transform
an expression such a s A + (B - C) * D - F / (G + H) i n t h e first
place? The process employs two stacks; the steps are explained below:

A + (B - C

Continue stocking
conventionally ...

operator

*

/

+

=

precedence

$(high)
3
2
2
1

0

£ ^ that the left bracket is included in the precedence table and
allocated low precedence. This is a trick to avoid having to treat explicitly
the condition ...or is a Left bracket. Clever.

8 : STRUCTURES, UNIONS 139

dig out matching
bracket as before

[dig to the floor because J
f the equals sign (the \
(terminator) is treated as A
f an operator with Lowest J
[precedence of all; see table)

Up addition to the functions Push() and Pop() a function is needed to
return the precedence of an operator. The function shown below is given
a character as its parameter and returns the corresponding integer from
the little table.

int Prec (char c)
f

switch (c)

case =
case (
case +
case V
default

return 0 ;
return 1 ;
case '-' : return 2
case '/' : return 3

printf ("\nChaos") ;

operator

*
/
+

c
ss

precedence

$(high)
3
2
2
1

0

\J the next page is a program
to transform conventional
expressions to reverse Polish. To
use the program type the
expression and terminate with an
equals sign:

A+(B-C)*D-F/(G+H)=
ABC-D*+FGH+/-

140 ILLUSTRATING C

AN EXAMPLE TO ILLUSTRATE THE USE OF STACKS

.pos I 0 I Stacks Type

10] Cll IZ1 [3] L39J
.A I I 1 1 17

•include < stdio.h >
typedef struct

int pos;
char A[40];

Stack_Type;

void Push (Stack_Type *, char);
char Pop (Stack_Type *) ;
char Peep (Stack_fype *) ;
int Prec C char) ;

int main (void)

Stack_Type X = { 0 }, Y = { 0 } ;
char ch;
int i ;
do

ch = getchar () ;
switch (ch)

case (:
Push (&Y, ch) ;
break;

I\Icase) :
while (Peep (&Y) != '(')

Push (&X, Pop (&Y)) ;
ch - Pop (&Y) ;
break;

ii ii ii ii ii

case +: case - : case *: case /: case =:
while (Peep (& Y) != V && Prec (ch) <= Prec (Peep (& Y)))

Push (&X, Pop (&Y));
Push (&Y, ch);
break;

default:
if (ch >= 'A1 && ch <= 'Z1)

Push (&X, ch) ;

while (ch != V) ;

for (i=0 ; KX.pos ; ++i
printf ("%c", X.A[i]) ;

printf ("\n");
return 0;

place here: Push(), Pop(), Peep(), Prec()

8 : STRUCTURES, UNIONS 141

i\ V /hat is one third times seven eighths? Answer: Seven
** twenty-fourths precisely. By contrast, 0.3333 times 0.875 gives an

approximate answer. Write a set of functions to add, subtract,
multiply and divide pure fractions and produce pure fractions. Base
the work on a special shape defined to contain fractions:

typedef struct

unsigned int Numerator;
unsigned int Denominator;
int Sign;

} Fraction^Shape

Use HCF(), defined on Page 24, to convert vulgar fractions to
simpler form (J 1470/693, for example, reduces to 70/33 when
numerator and denominator are divided by their highest common
factor of 21 D .

Devise a test program for reading two fractions (J as two pairs of
integers j), selecting an operation i| add, multiply, etcty and printing
the resulting fraction.

the book list program on Page 131 for looking up other
books or other kinds of information particular to your own field.
There is no reason to confine the search to the first member; let
the user of the program specify any of the members and provide
a fragment of text for the search. In the case of numerical
members, adopt a suitable convention & such as a match wherever
a date falls within a year of the search date.

ijfhe program on Page 141 transforms an algebraic expression from
one notation to another. Change the program so that it reads a
numerical expression instead of an algebraic one •&> and produces a
single numerical result.

The left stack should be made to contain numbers instead of letters.
Whenever you are about to place an operator on the left stack,
pop two numbers, apply the operator, then push the result back on
the left stack. When you meet the equals sign you should be left
with a single number on the left staclc; that is the result of the
expression. Try your program with
6 + (4 - l) * 2 - 3 / (7 + 5) «
and the answer should be 11.75.

142 ILLUSTRATING C

TJfhis chapter explains the shortcomings of arrays having
pre-determined length and the consequent need for
dynamic storage. The use of library functions for allocating
and freeing memory is then explained.

TJhe concept of a linked list is introduced with particular
reference to stacks. The concept is then extended to cover
rings and binary trees.

[jxamples in this chapter include a program for
demonstrating ring structures and a program for finding
the shortest route through a road network. Finally there is
a sorting program based on the monkey puzzLe technique.

CONCEPTS OF DYNAMIC
STORAGE & CHAINING

Tfhe trouble with arrays is that the processor has to be told what space
to allocate to each of them before execution starts. There are many
applications for which it is impossible to know the detailed memory
requirements in advance. What we need is a scheme in which the
processor allocates memory during execution and on demand. A program
written to use such a scheme fails only if demands on total memory
exceed supply, not if one of many individual arrays exceeds its bounds.

zjhe scheme is called 'dynamic storage. ' For practical purposes it is based
on structures. When the program needs a new structure it creates one
from a 'heap' of unstructured memory. When a program has finished with
a structure it frees the memory from which that structure was built,
tossing it back on the heap. With good luck and management the heap
should retain enough memory to meet all demands throughout execution.

dy storage involves linking structures of identical shape. We use a
library function for allocating these structures.

i j o create structures of identical shape it is meaningless to define a
member that has the same shape as its parent structure:

struct Puff
B f r d

.Smoke;

Bird;

•Green
. Smoke

|

'Green

• Smoke

struct Puff

^2 struct Puff

*Gr&.n r^J struct Puff

•Smoke 'Green

-Smoke

• struct Puff
• &rect\ • struct Puff

lyut you can declare a member that points to a structure of the same
shape:

struct Puff

char Green;
(struct Purry *

Bird;

Smoke;

struct Puff struct Puff

Bird

i j fo create the structure being pointed to we must allocate space for it.
To allocate space, use the library function mallocO (J memory allocator ^
whose prototype may be found in the header file < stdlib.h > . This
function returns a pointer to a region of storage of a size specified by
the argument of the function.

T/he prototype of mallocO is shown opposite, embellished with explanatory
remarks. The prototype of f r ee () , which returns storage to the heap, is:
void free (void *) ; where p must have been established using mallocO
(| or one of its derivatives, callocO or reallocO)) .

144 ILLUSTRATING C

prototype*.

void * malloc (si2ie_t b) ;

Uoc()
Returns a pointer

structured

shape, cast malloc
to appropriate

Ijp the example opposite, the shape of object pointed to is struct Puff.
The size of object is sizeof(struct Puff) where the value returned by
sizeofC) is of the shape demanded by malloc() (^namely the type:
size_t J), The library defines an appropriate 'size_t' for your particular
implementation and 'model' (j tiny, huge, etc. if using a PC]) .

[jf you declare a pointer, p, pointing to objects of shape struct Puff:

struct Puff * p ;

you may create a pointee thus:

p - (struct Puff *) malloc (sizeof (struct Puff)) ;

, jcast _w

'pointer to type struct Puff

and free a pointee thus:

free (p) ; returned to heap

undefined content

iore usefully, you may link structures in the form of a chain:

BirdSmoke = (struct Puff *) malloc (sizeof (struct Puff)) ;

Add another link:

Bird.Smoke->Smoke = (struct Puff*) malloc (sizeof(struct Puff)) ;
Bird.Smoke -> Smoke -> Smoke = NULL ;

Bird .Green | 1

.Smoke

id so on: Bird.Smoke -> Smoke -> Smoke ->

9: DYNAMIC STORAGE 145

WITH DYNAMIC MEMORY ALLOCATION

Sn the previous chapter, stacks are
xsed on arrays and have the shape

depicted on the right. A new shape of
stack is introduced below; it is based on
dynamic storage rather than an array.

top

/*-

are is the definition of the shape of each element:

typedef struct Element

char c;
struct Element * next;

Elernent_Type, * Pointer_Type;

Notation

alias for
'struct Element'

l^ist processing' is the art of diverting pointers
by copying addresses from one pointer variable to
another. To depict such operations we use the
notation shown here. The fat arrow depicts a simple
copying of contents in the direction of the arrow.
The ordinal number (J 1st, 2nd, etc.]) shows the
order of operations needed to avoid overwriting.

(flere is the definition of Push(). The copy operations are depicted
opposite, together with sketches of the linkage before and after the copy
operations:

pointer to objects of type
Pointer_ Type

void Push (Pointer_Type * q , char ch)
{

Pointer_Type p;
p = (Pointer_Type) malloc J^sizeof (Element_Type)) ;
p -> c = ch
p -> next = *

, * 1 = P

4 jp invocation of Push() demands two arguments of which the first
nominates a pointer. For example, Push(&X, 'A') to push 'A' onto stack X.

146 ILLUSTRATING C

(i) ORIGIHAL STACK (ii) CREATE HEW STRUCTURE (maLLoc)

j j r e is the definition of Pop() . The copy operations are depicted under
the definition together with sketches of the linkage before and after the
copy operations.

char Pop (Pointer-Type *

char ch ;
Pointer_Type p ;
p = * q ;
if (* q ! = NULL)

ch = p -> c ;
* q « p -> next ;
free (p) ;
return ch ;

pointer to objects of type
^^PitT'

else
return '\0' ;

(i) ORIGIHAL STACK (ii) MAKE p POIHT TO TOP STRUCTURE

(Hi) COPY POIHTERS

free new top

(iv) RESULTIHG STACK

1/inally, here is the definition of Peep(). No pointers are disturbed.

char Peep (Pointer_Type * q)

if (* q != NULL)
return (* q,) -> c ;

else
return \<z)' ;

9: DYNAMIC STORAGE 147

THIS TIME WITH DYNAMIC STACKS

4 \ program for transforming algebraic expressions into reverse Polish
form is given below. The main bop from 'do' to 'while (ch N '=');' is
identical to that on Page 14L Function Prec() is also identical. Functions
Push(), Pop() , PeepO are replaced by the dynamic versions defined on
the previous double page, but their prototypes are the same as before.

/* POLISH WITH DYNAMIC STACKS */
#include < stdio.h >
#include < stdlib.h >
typedef struct Element

char c;
struct Element * next;

Element^Type, * Pointer_Type;
void Push (Pointer_Type * , char) ;
char Pop (Pointer_Type *) ;
char Peep (Pointer__Type *) ;
int Prec C char) ;
int main (void)

char ch;
Pointer_Type X = NULL, Y = NULL;

,do

ch = getchar () ;
switch (ch)

case (:

Push (&Y, ch) ;
break;

case

Element_ Type

Pointer_ Type

two stacks

Xfoi Yfo"

while (Peep (&Y) != '(')
Push (&X, Pop (&Y)) ;

ch = Pop (&Y) ;
break;

case V : case ' - ' : case V : case ' / : case '=':
while (Peep (&Y) != V && Prec (ch) <= Prec (Peep (&Y)))

Push (&X, Pop (&Y)) ;
Push (&Y, ch) ;
break;

default: if (ch >= 'A' && ch <= 'Z')
Push (&X, ch) ;

while (ch != '=') ; /* end of do-while, loop * /

while (Pop(&Y) != V)

,. ' , ^ , v N N <^j^J pop TronV X into Y
while (Peep(&,X)) ^ \ £ % reversing order}

PushC&Y, Pop(&X)) ; v - - a- — '(, p(
while (Peep (&Y))

printf C%c\ Pop(&Y));
printf ("\n");
return

pop and
.print entire Y\

place here: Push(), Pop() f PeepO, Prec()

148 ILLUSTRATING C

PARADIGMS FOR TRAVERSAL,
INSERTION & DELETION

chain is demonstrated on earlier pages in the particular form of a
stack. In general, chains are more flexible than this; they have many
applications. The example which follows this introduction illustrates an
algorithm for finding the shortest route through a road network.

l/or demonstrating the techniques introduced below, we adopt the same
structure (f type Elernent_Jype D as that employed on the opposite page
for stacks. Assume the following chain already set up;

ifraversal means referring sequentially to the elements of a chain. In this
demonstration, 'referring to' involves printing the content of an element «
the content being just a single character.

'declare two
working pointers\Pointer_Type p, n;

/* TRAVERSAL - NON RECURSIVE */
p = H;
while (p)

printf ("\n%c", p -> c) ;
p = p -> next;

linkage:
before

insertion:

/* INSERT 'R' AFTER 'E' */
p = H ;
while (p -> c != 'E')

p = p -> next;
n = (Pointer_Type)

malloc (sizeof (Element Type));
n -> c - 'R1; "
n -> next = p -> next;
p -> next * n; <^j 2nd copy

i* DELETE 'E'
if (

else

1

H -> c =
H = H ->

p = H ;
while (p

p = p
p -> next

LEAVING
- 'E')
next ;

-> next
-> next
55 P - >

GARBAGE

-> c !=
•

next ->

* /

'E')

next ;

H

case, oc: if first element

cast |3; if not first element IN

\ht\

9 : DYNAMIC STORAGE 149

AN EXAMPLE TO ILLUSTRATE
THE USE OF CHAINS

I/inding the shortest (J or longest]) route through a network is a problem
that crops up in various disciplines & one of which is critical path scheduling
for the control and monitoring of construction projects. Given a network
such as that below, the problem is to find the shortest route from the
node marked START to that marked END. The journey must follow the
direction of the arrow. The number against each arrow shows the
journey time. /2.0

0 . ^ a node.

START\

Tjfhe data structure needed for a shortest-route program is depicted
below. There is a record for each nodey and a chain runs from each
such record Each chain comprises edge records which store data describing
all the edges which run out of that node.

.Head

.Bestime

.Switch

.Route

LongTCme

record for node record For edge record for edge

Records for all nodes are held in an array named NodeFacts. The
record for node 2 is annotated more fully oelow. In the component
named Bestime is the value LongTime
(t a constant set to 10m J). In the
component named Switch is a Boolean
value, initially switched to On. Uses of
these items are explained later.

NodeFacts[2].Head
NodeFacts[2].Bestime
NodeFacts[2].Switch
NodeFacts[2].Route

riT—^
iongfune \
0n\)

NodeFacts[2].Head.Link
NodeFacts[2].Head.Tip
NodeFacts[2].Head.Time

T/he records for edges running out of a node are created dynamically,
Each record has a component for
storing the link, another for storing
the node number at the tip, another
for storing the journey time along
the particular edge. This example is
for edge 2 to 5.

i j h e shortest route is found by an iterative process. Before the process
can start the chains must be formed > » and initial values placed in the
components that will eventually hold changing values. The component
named Bestime is to hold the best time so rar achieved to this node by
different trial routes; the initial time in this component is set so high that
the first feasible route, however slow, has to be an improvement. An
exception is the starting node: the best time to the starting node is, by
definition, nothing.

4\| l switches are turned On initially. A switch that is On implies that the
edges leading out of that node must be explored (J or re-explored)) .

150 ILLUSTRATING C

TJhe iterative process starts at the starting node, then cycles the array
o? node records until terminated. The process terminates on detection of
all switches being OFF

4V each node the chain of edge records is traversed. For each edge in
the chain, the time to reach its tip is found by taking the best time so
far achieved at the tail and adding it to the journey time for that edge.
The result is compared with the best time so far recorded in the node
record for the tip. I f the new time is better, several things must be
recorded. These are depicted below:

node

.Head

.Bestime

.Switch

.Route

.Head

.Bestime

.Switch

.Route

node

.Head

.Bestime

.Switch

.Route

\^/henever a better route to a node is
found, the faster time is substituted and
the node switched £h, as depicted for
node 5 above. To be able to trace this
improved route subsequently, the Route
component is made to contain the number
of the node through which the route
came. So the outcome of dealing with the
edge from 2 to 5 is as shown here:

l i f t e r traversing the chain of edges from node 2, the Switch at node 2
is turned off. However, the action at node 2 included turning On the
switch at node 5, so the iteration is not yet finished. The process
continues until all switches are off *& in other words until a complete
cycle through the nodes fails to make a single improvement to the route.

ijfhe node records are assembled as an array rather than being created
dynamically and linked as a chain. The array structure was chosen
because node records are
accessed in a 'random' way
^ e.g. when dealing with node
2 you have to refer to
nodes 5 and 4]) . Using an
array, such references are
resolved quickly by a simple
change of subscript.

TjVied with the network
sketched opposite, data and
results would be as shown
here. r^£>

rzr.
6
3
3
i
i
2
2
5
4
4

nodes

1
2
2
5
4
5
6
6
5

No.edges Startnode
9 3
10.0
16.0
5.0
12.0 (e/t
6.0 ^ —
8.0
9.0
10.0
1.0

Route from 6 to 3 -s—a_
6 4.. .2. . .1 . . 1 ^ ^ ^

Time taken is 31.0 -^^^^

Endnode
6

i
\

Jresults) \

9: DYNAMIC STORAGE 151

THE COMPLETE PROGRAM

/ * SHORTEST ROUTE PROGRAM * /

•include < stdio.h >
•include < stdlib.h >

/ * ROUTE PROGRAM BEGINS * /

typedef struct Edge

struct Edge * Link;
int Tip;
double Time;

}
Edge_Type, * Ptr_Edgetype;

typedef struct Node

Ptr__Edgetype Head;
double Bestime;
int Switch;
int Route;

}
Node_Type, * Ptr_Nodetype;

int main (void)
f

enum
double const
double const
double

int

Ptr_ Edgetype

Node_Type

Boolean switch)

impracticably high

f Off, On } ;
Nothing = 0.(3;
LongTime = 1E20;
Try, Best;
Nodes, Edges, StartNode, EndNode,
Tail, Cycles, i , j , n;
Edge = NULL, p = NULL;

^ j array of node
NodeFacts [$0] ; ^ - * * ^ records '

printf ("\nNo.Nodes, No.Edges, Startnode, Endnode\n");
scanf ("%i %i %i % i " , & Nodes, & Edges, & StartNode, & EndNode) ;

for (to; i<= Nodes;
f

NodeFacts [i] . Head = NULL;
NodeFacts [i] . Bestime = LongTime;
NodeFacts [i j . Switch = On;
NodeFacts [i] . Route = 0 ;

}
NodeFacts [StartNode] . Bestime = Nothing;

replace time
at start node

152 ILLUSTRATING C

for Edges; ++ j)

P = (Ptr_Edgetype) malloc (sizeof (Edge_Type)) ;
scanf ("%i %i %lf", & Tail, & p->Tip, & p -> Time) ;
p -> Link = NodeFacts [Tail] . Head;
NodeFacts [Tail] . Head = p;

- • ' • to

leads i

Cycles = 0 ;
n = StartNode - 1;
while C Cycles < 2)
f

Cycles += 1;
n = n % Nodes + 1;
if (NodeFacte [n] . Switch == On)
{

Cycles = 0 ;
Edge = NodeFacts [n] . Head;
while (Edge != NULL)

Try = NodeFacts [n].BesHme + Edge -> Time;
if C Try < NodeFacts[Edge->Tip l.Bestime)

NodeFacts
NodeFacts

' Edge->Tip].BesHme = Try ;
' Edge->Tip].Route = n ;

Edge->Tip].Switch = On;NodeFacts

Edge = Edge -> Link;

NodeFacts [n] . Switch = Of f ;

}
Best = NodeFacts [EndNode] . Bestime;
if C Best != LongTime && Best != Nothing)

printf ("\nRoute from %i to % i \ n " , EndNode, StartNode) ;
n = EndNode;
while (n)
f

printf ("%i", n) ;
n « NodeFacts [n] . Route;
if (n) printf ("...");

printf ("\n\nTime taken is %.2f", Best);

else
printf ("\nNo way through, or going nowhere");

return 0 ;

9: DYNAMIC STORAGE 153

AN ELEGANT DATA STRUCTURE

Tjfhe fundamental record of a doubly linked
ring has pointers pointing fore and art thus:

4j£cess to records in a ring is simplified by
employing one record as a dummy head as
illustrated below. This device makes it unnecessary to check whether the
record to be added or deleted is next to the fixed head, and, if so, to
take special action. Very messy.

Head I • I Head

.Fore

'{data •!

.Aft

gp\ ring is depicted above with four records; it is also depicted empty.

l#lere is the definition of a shape
suitable for constructing a ring. To
keep everything simple, this shape is
made capable of storing just a
single character. L ^C^

l\n the main program an empty ring
may be set up as follows:

typedef struct Petal

struct Petal * Fore ;
struct Petal * Aft ;
char Data ;

}
Ring_Type, * P_Type ;

p = (P_Type) malloc (sizeof (Ring_Type)) ;

4 \ new record may be inserted before or after the record currently
pointed to. Procedures for both these operations are given below:

void In_After (P_Type Old, P_Type Young)

Young -> Fore = Old -> Fore ;
Young -> Aft = Old;
Old -> Fore -> Aft = Young ;
Old -> Fore = Young ;

Young

pointers
initially

finally INSERT Young
AFTER Old

154 ILLUSTRATING C

void In_Before(P_Type Old, P_Type Young)

Young -> Fore « Old;
Young -> Aft = Old -> Aft
Old -> Aft -> Fore » Young;
Old -> Aft = Young;

Young

Young Old

^ if pointers
initially

finally INSERT Young
BEFORE Old

l^eletion (J without freeing and returning to the heap]) is simple:

void Delete(P_Type Old)

Old -> Fore -> Aft = Old -> Aft;
Old -> Aft -> Fore » Old -> Fore;

copy these in either order

TJraversal is simple in either direction, the only difficulty is stopping. I f
the aim is to traverse the ring precisely once, start by pointing to the
first record and arrange to stop as soon as the pointer points to the
dummy head ({ before trying to refer to data in the dummy head J).

• -

A

<\ - Head -> Fore ;
while (a != Head)
{

printf ("%c", q -> Data) ;
<\ = <\ -> Fore ;

printf ("\n") ;

lAf both occurrences of Fore were changed to Aft, the result of the
above piece of program would be ELBA rather than ABLE.

\Jver\eaf is a demonstration program designed to exercise the principles
and procedures introduced on this double page.

9: DYNAMIC STORAGE 155

A PROGRAM TO DEMONSTRATE THE
PRINCIPLES OF A DOUBLY-LINKED RING

ijfhe following program maintains a doubly-linked ring organized
alphabetically. To introduce a letter, enter +L (j[or + other letter)) . To
remove a letter, enter -L (J or - whatever the letter j) . To display the
stored data in alphabetical order, enter > at the start of a line. To
display in reverse order enter <. To stop, abort the run (J e.g. in DOS,
hold down Ctrl and press C)j) .

/* RING A RING OF ROSES */

#include < stdio.h >
#include < stdlib.h >
typedef struct Petal

struct Petal * Fore;
struct Petal * Aft;
char Data;

}
Ring_Jype, * P_Type;

void In_Before(P_Type Old, P_Type Young) ;
void DeleteC P_Type Old) ;

/* MAIN PROGRAM */

int main (vo id)

char Choice, Letter;
P-Jype Head, p, q ;
char w [80]; input buffer for $scanf()

Head = (P_Type) malloc (sizeof (Ring_Type)) ;

Head -> Fore = Head;
Head -> Aft = Head;
Head -> Data = NULL;

struct PetoL

prototypes

printf ("\nEnter +L (or + any letter) to add letter to the ring"
M\nEnter -L (or - any existing letter) to remove letter"
n\nEnter > to list alphabetically, or < to list in r eve rseW) ;

Enter +L Car + any letter] to add letter to the ring
Enter -L Cor - any existing letter] to remove letter
Enter > to list alphabetically, or < to list in reverse
• C
+ F

ACF
- C

<
FA

156 ILLUSTRATING C

while (i)
{

remove
ra Letter

Choice = Letter = 0\
sscanf (gets(w), " %c %c ", & Choice, & Letter) ;
if (Letter == 0 || (Letter >= 'A' && Letter <= 'Z'))

switch (Choice)

case V :
p = (P_Type) malloc (sizeof (Ring_Type)) ;
p -> Data = Letter;
q = Head -> Fore;
while (^ != Head && q, -> Data < Letter)

q, = q -> Fore;
In_Before (q, p) ;
break;

case '-' :
q = Head -> Fore;
while (q, != Head && q̂ -> Data != Letter)

Q = Q -> Fore;
if (q != Head)

Delete (o) ;
break; v

list
alphabetic

return 0;

case '>' :
q = Head -> Fore;
while (q != Head)

printf("%c", q, -> Data);
(\= (\-> Fore;

printf ("\n");
break;

case '<' :
0 = Head -> Aft;
while (^ != Head)

printf("%cf\ q -> Data);
q, = q -> Aft;

printf ("\n");

^Jyour compiler
may warn of

f unreachable code\

functions Injefore () and Delete () here
• i

4)p application such as a book index $ a secondary sorted list under
each entry j) can be handled as a ring of rings.

9: DYNAMIC STORAGE 157

ANOTHER ELEGANCE
I

TJake some letters to sort:

D, Z, B, E, A, F, C /^T~^\
(a node J

luring the first letter, D, to the root of a ^ - ^ - * * - * f t
tree and store it as a node. (J Trees grow (add D\
upside down as do several metaphors in W ^ ^ - '
computer science.]) ^~ _ _ _

Mow take the next letter,^ Z, and bring
it to the root node. It is 'bigger' than D
so go right and make a new node to
contain Z as shown here.

the third letter, B. It is
smaller than D so go left and
make a new node.

ijfhe next letter, E, is bigger than D so
go right. It is smaller than Z so go left.
Then make a new node to contain E as
shown here.

Ijp general, bring the next letter to the
root node and compare. I f the new letter
is smaller go Left, if bigger go righL Do

the same thing as you reach the next node, and the next and the next.
Eventually you will find no node for comparison. At that stage make a
new node and store the new letter in it.

158 ILLUSTRATING C

4 ^ any stage the tree may
be traversed (Jf or stripped])
as shown below. Notice that
the arrow runs through the
letters in alphabetical order.

TJhe type of node record de-
picted opposite is easily defined

Right

typedef struct Nod

struct Nod * Left;
struct Nod * Right;
char Data;
int Count;

Node_Type, * P_Type;

l^janging letters on a tree & depicted in stages opposite « is best done
recursively. I f the current node is NULL make a new node to contain the
new letter; otherwise invoke Add_Item with the parameter specifying the
left or right pointer according to how the new letter compares with that
pointed to:

r

{

}

-Type

if (

else

P
P

if

Add_Jtem (P_Type p,

== NULL)
= Create_Node (Letter,

(Letter < p -> Data)
p -> Left = Add Item (

else

return

if (Letter > p -> Data

char

i);

Letter

p -> Left,

)
p -> Right = Add_Item (

p -> Counf ++;
p ;

P ->

\ don t .

)
^—^ ,—-̂A create new j

'{node with null\
\potntersj^

Letter) ;

Right, Letter) ;

store twice, just J
(to the count ir

Tjhe function for creating a node involves the mallocC) function whose
prototype is in <stdlib.h>:

P-Jype Create_Node (char D, int C)

P_Type p;
p = (P_Type) malloc (sizeof (Node_Type)) ;
p -> Left = NULL;
p -> Right = NULL;
p -> Data = D;
p -> Count = C; p
return p;

9: DYNAMIC STORAGE 159

(COHTIHUED)

TJfhe tree may be traversed recursively:

void Strip (P_Type p)

if (p !« NULL)

Strip (p -> Left) ;
Print (p -> Count, p ->
Strip (p -> Right) ;

}

where the Print() function is as follows:

void Print (int i , char c)
f

while (i—)
printf ("%c", c) ;

I print the Letter as j

many times as
Count dictates T

I jhe order of stripping shown above is called 'in order stripping. Two
other orders are useful to programmers:

V̂" V^ \ / * ^

'pre order D BAC ZEF

, Print (p -> Count, p -> Data) ;
Strip (p -> Left) ; <

> Strip (p -> Right) ;

- V V̂" ^s^ ^V "V̂ > ^ V

'post order ACB FEZ D

Strip (p -> Left) ;
Strip (p -> Right) ;
Print (p -> Count, p -> Data) ;

4 ^ g to the tree is simple, as demonstrated by the elegant brevity of
Add_Jtern, but true deletion is not simple because it requires re-
arrangement of the tree. The following function finds the letter specified,
then decrement its count of occurrences. The Print() function ignores
letters that have a zero count, so Lose_Itern effectively deletes letters.

void Lose_
{

if C p

if

.Item (P_Type p, char Letter)

!= NULL) ^ - ^

(Letter < p -> Data) - < S
Lose_Item (p -> Left, Letter) ;

else
if (Letter > p -> Data) *

Lose_Item (p -> Right, Letter) ;
else

if (p -> Count > 0) ^j£
p -> Count — ;

Zjnods not found)

—^/ recursive\
(V calls J

^ V/" * \ ^ \ ^ ^

Cnode found and J
-Jk decremented if f

ILLUSTRATING C

ANOTHER NAME FOR THE
BINARY TREE SORT

/* MONKEY PUZZLE SORTING */
•include <stdio.h>
•include <stdlib.h>
typedef struct Nod

struct Nod * Left;
struct Nod * Right;
char Data;
int Count;

Node_Jype, * P_Type;

P_Type
P_Type
void
void
void

int main (void)
f

P-Jype
char

Create_Node (char, int) ;
Add_Jtem (P_Type, char) ;

Lose_Item (P_Type, char) ;
Strip (P_Type) ;
Print (int, char) ;

Root;
Choice, Letter, w [8 0] ;

printf ("\nEnter +L (or + any letter) to add letter to tree"
"\nEnter -L (or - any existing letter) to remove it"
"\nEnter to list alphabetically\n") ;

to Leave the loop, A
abort the program ^

Root = NULL;
while (l)
f

Choice = Letter = 0 ;
sscanf (gets (w) , " %c %c ", & Choice, & Letter) ;
if (Letter == 0 || (Letter >= fAr && Letter <= %t))
{

switch (Choice)

case V :
Root = Add_Item (Root, Letter);
break;

case ' - ' : case '_ ' :
Lose_Item (Root, Letter) ;
break;

) make underscore
a synonym for
a minus signj

case V :
Strip (Root);
printf (f \nf l) ;

return 0;

your compiler
may warn of

(unreachabte code A

here the functions whose prototypes are listed above

9: DYNAMIC STORAGE 161

implement the program on Page 148; it employs dynamic stacks.
Change the program so that it reads a numerical expression instead
of an algebraic one -ss* and produces a single numerical result. The
way to go about it is explained on Page 142, exercise 3.

implement the shortest route program on Page 152. Contrive a
network in which there is more than one 'shortest' route. Which
does the program choose and why? Modify the program so that it
detects multiple shortest routes and warns the user of their existence.

program ROSES such that it stores words in alphabetical
order rather than just letters.

As a challenge, develop the program as a tool for book indexing.
The structure on the ring should contain a pointer to a chain of
integers representing page numbers. Each structure on the main ring
should also contain a nested structure (| of similar shape j) defining
a sub-ring to enable an entry in the book index to look something
like this:

cats, 172ff
care of, 172-4
habits of, 176-7
in literature, 178-81

in which the sub-entries for 'cats' are in alphabetical order.

implement the monkey puzzle program on Page 161. Extend its
scope so that entering < from the keyboard makes the list of
letters appear in reverse order. (| The scope of binary trees is
only touched on in this book.])

162 ILLUSTRATING C

yfhis chapter presents the functions of the ANSI C library.

Ijjach function is described by name of function, name of
header file in which it is defined, its prototype, a brief
description of the function, and an example of its usage.
Functions are grouped according to application; use the
summary in Chapter 11 for alphabetical reference.

Inunctions concerned with multi-byte characters and foreign
locales are not fully described in this book. For full details
see ANSI X 3.195 which also explains why such functions
were included in the standard library.

l/unctions for dealing with input, output and file management are
described under the following subheadings:

Low-level input & output
Single character input & output
File management
Random access
String input & output
Formats for input & output
Temporary files
Buffering

LOW LEVEL I/O

fwrite, fread
• #include <stdio.h>

size_t fwrite (const void * buF, size_t b, size_t c% FILE * s);
size_t fread (void * buF% size_t b, size_t c, FILE * s);

Low level functions for writing from buffer to file and reading from file
to buffer. Both functions return the number of items successfully
transferred. size_t is a special type defined by typedef in stdio.h.

Nr
Nr

Out
- In

= fwrite
= fread

c P out
P_in,

, sizeof
sizeof (

(char)
char),

, 80, OutStream
80, InStream);

SINGLE

);

CHARACTER I/O

fputc, putc* putchar
• #include < stdio.h >

int fputc (int c, FILE * s);

Output a single character to stream s.

• #include < stdio.h >
int putc (int c, FILE * s);
int putchar (int c);

macros: putc() is equivalent to fputc(), so avoid arguments that have
side effects; putcharQ is equivalent to putc(int c, stdout);

fputc (Ch, stdout);

fgetc, gete, getchar
• #include < stdio.h >

int fgetc (FILE * s);

164 ILLUSTRATING C

Input and return a single character from stream s.

• #include <stdio.h>
int getc (FILE * s);
int getchar (void);

macros: getc() is equivalent to fgetc(), so avoid arguments that have
side effects; getchar() is equivalent to getc(stdin).

Ch a fgetc (stdin);

ungetc
• #include <stdio.h>

int ungetc (int c9 FILE * s);

Causes the next fcjetc() (J or other 'get1 function]) on this stream to pick
up the character ungot1. I f a second character is 'ungot' before the first
has been picked up, the first is lost. Returns the code of the character
'ungot', or EOF if unsuccessful

ungetc (Ch, stdin);

FILE MANAGEMENT

fflush
•include <stdio.h>
int fflush (FILE * s);

Flush output buffer

fflush (stdout);

on stream s. Return &% ifsuccessful.

fopen, freopen, fctose
•include <stdio.h>
FILE * fopen (const char * file, const char * mode);
FILE * freopen (const char * file, const char * mode, FILE * s);

Function fopen() opens a file in the mode specified and returns a
pointer to the associated stream. Returns NULL if unsuccessful. The
composition of *mode is defined on Page 117.

Function freopen() is similar to fopen(), but points to stream 5, thereby
redirecting input or output from stream s to the nominated file.

• #include <stdio.h>
FILE * fclose (RLE * s);

Closes an open stream, flushing the output buffer if writing. Returns 0 if
successful, otherwise NULL

10: LIBRARY 165

char *p = "C:\\MYDIR\\MYFILE.ME";
MyStream * fopen (p, "w+");
freopen ("PRNTFILE.TXT", V , stdout);
fclose (YourStream);

remove, rename, rewind
• #include <stdio.h>

int remove (const char * ftLe)\

Deletes a file, currently closed, and returns 0 if successful.

• #include <stdio.h>

int rename (const char * old* const char * new);

Renames a file, whether it is open or closed, returning 0 if successful.

• #include <stdio.h>
void rewind (FILE * s);

Clears end of file and error flags for stream s. Locates the file pointer
such that the next read will pick up the first item.

printf ("%s\n", remove("MYFILE.DOC") ? "Error": "OK");
printf ("%s\n", rename ("HER.SUR", "HIS.SUR") ? "Error1 : "OK");
rewind (MyStream);

clearerr, feoF, ferror
• #include <stdio.h>

void clearerr (FILE * s);

Resets the error indicator and end-of-file indicator without rewinding.

• #include <stdio.h>
int feof (FILE * s);
int ferror (FILE * s);

Returns non-zero if there has been an attempt to read the stream
beyond its end-of-file indicator, or the error indicator has become set.
Returns z.ero if all's welL Each function clears its associated indicator. See
page 118 for fuller description.

RANDOM ACCESS

fseek, ftell
• #include <stdio.h>

int fseek (FILE * 5, long offset, int origin);

Locates the file pointer:

166 ILLUSTRATING C

• at the start of stream s if origin specifies 0,
• one byte past the end of the file if origin specifies 2,
• at offset bytes from the start of the file if origin is 1.

For clarity: enurn { SEEK_SET, SEEK_CUR, SEEK_END }
is defined in stdio.h as constants for 0, 1 and 2.

The function returns 0 if successful, but under MS DOS may return 0
after an unsuccessful attempt.

• #include < stdio.h >
long ftell (FILE * s);

Returns the position of the file pointer. I f the return is used as offset in
f seek(), origin must be zero (£ SEEK_SET]) .

fseek (MyStream, 0, SEEK_SET);
ftell (YrStream);

fsetpos, fgetpos
• #include < stdio.h >

int fsetpos (FILE * $9 const fpos_t * p);

Sets the file pointer for stream 5 to the value pointed to by />. I f
successful, the function clears the end-of-file flag for stream s and
returns 0. I f unsuccessful, the function sets the global variable errno and
returns a non-zero value. fpos_t is a special type defined by typedef in
stdio.h.

• #include < stdio.h >
int fgetpos (FILE * 5, fpos_t * c);

Saves the position of the file pointer on stream s at the location pointed
to by c I f successful, the function returns 0, otherwise it sets the global
variable errno and returns a non-zero value.

fpos t * PosPoint;
fgetpos (MyStream, PosPoint);
fsetpos (MyStream, PosPoint);

STRING I/O

fgete, gets, fpute, puts
• #include < stdio.h >

char * fgets (char * b, int /7, FILE * s);

From stream s the function reads as many as n-i characters to buffer b[J.
It stops reading if it meets \n (J which it RETAINS]) or EOF. It appends
'\0' to the character string. The function returns a pointer to burfer 4
or NULL if the operation rails.

10: LIBRARY 167

• #include <stdio.h>
char * gets (char * b);

Reads characters from stdin until meeting \n (J which it DROPS]) or EOF.
It appends '\0f to the character string. The function returns a pointer to
buffer 4 or NULL if the operation fails.

• #include <stdio.h>
int fputs C const char * b% FILE * s);

Sends the character string in buffer b (J which must be zero terminated])
to stream s. Returns 0 if the operation fails.

• #include <stdio.h>
int puts (const char * b);

Sends the character string in buffer b (J which must be zero terminated])
to stream stdout and appends a new line character. The function returns
0 if the operation fails.

char
fgets
gets
fputs
puts

w

c
c

r
w,

V ,
w,

80] , v [80] ;
80, stdin);

);
stdout);

FORMATS FOR I/O

fprintf, printf, sprintf
• #include <stdio.h>

int fprintf (FILE * 5, const char * fmt^ ...);

Prints on stream $ as many items as there are single percentage signs in
Fmt that have matching arguments in the ... list. Pages 110 and ill describe
the composition of the format string. The function returns the number of
items actually printed

• #include <stdio.h>

int printf (const char * fmtn ...);

As fprintfC) but with stdout implied for stream $.

m #include <stdio.h>
int sprintf (char * /?, const char * Fmtn ...);

As fprintf() but with string p in place of stream s.

168 10: LIBRARY

char fmat [] = "First %i, then %6.2f then %c then %s\n";
char sink [80] ;
fprintf (stdout, fmat, 1, 1.25, 'A', "OK");
printf (fmat, 1, 1.25, 'A', "OK");
sprintf (sink, fmat, 1, 1.25, 'A', "OK");
printf ("%s", sink);

vfprintf, vprintf, vsprintf
• #include <stdio.h>

#include < stdarg.h >

First 1 then 1.25 then A then OK
First 1 then 1.25 then A then OK
First 1 then 1.25 then A then OK

int vfprintf (FILE * 5, const char * fmt, va_Jist ap);
int vprintf (const char * fmt, va_Jist ap);
\x\\ vsprinif (char * /?, const char * fmL, va_list ap);

These functions correspond to fprintf, printf, sprintf respectively, but
instead of having a list of arguments they have a pointer of type va_Hst
pointing to the 'next1 argument retrievable by va_arg(). Page 96 explains
the use of va_arg(). va_list is a special type defined by typedef in
stdarg.h.

for C n=0; n< Count; ++n)
vprintf ("%f", va_arg (ap, double));

fscanf, scanf, sscanf
• #include <stdio.h>

int fscanf (FILE * 5, const char * fmU ».);

The function reads from stream s as many items as there are
percentage signs in Fmt for which there are corresponding pointers in the
... list. White space in fmt is ignored. The function returns the number of
items actually read; if excess arguments are provided they are ignored.
Pages 112 and 113 describe the composition of the format string.

• #include <stdio.h>

int scanf (const char * fmt, ...);

As fscanf() with stdin implied for stream s.

m #include <stdio.h>
int sscanf (const char * ^, const char * fmL, ...);

As fscanf()

fscanf (
scanf (

char w [
gets (w
sscanf (

but with string

stdin, " % i " , &n
' % i ' \ &n);

80
); t
w,

1;
'%i %f %lf"

b in

);

, &n,

place of

&x, &y

stream s.

) ;

10: LIBRARY 169

TEMPORARY FILES

hmpfile, tmpnam
• #include < stdio.h >

FILE * tmpfile (void);

Opens a nameless, temporary file in mode "wb+" and returns the
associated stream. Mode is defined on Page 117. The function returns NULL
if opening fails. The nameless file is automatically deleted on closure of
the stream.

• #include <stdio.h>
char * tmpnam (char * nam);

Generates a unique name and returns a pointer to it. The argument
points to the array in which you want the name stored. The minimum
length of array is given by L_tmpnam, the maximum number of names
by TMP_MAX, these constants being defined in stdio.h. Absence of an
argument implies storage in the form of a constant. See Page 120 for
clarification.

FILE * Brief Stream;
Brief Stream = tmpfile Q ;

fclose (Brief Stream) ;

char R [L tmonarn] ;
tmpnam (R j ;

FILE * S;
char * M = tmpnam();
S = fopen (M, "w+b") ;

' name stored as a constant >

fclose (S) ;
remove (M) ;

BUFFERING

setybuf, setbuf
• #include < stdio.h >

int setvbuf (FILE * 5, char * A, int mode, size_t sz);

Changes the buffer for stream s from that allocated by the system to
that specified by A The mode of buffering should be specified as:

• _IOFBF for full buffering,
• _IOLBF for buffering a line at a time,
• _IONBF for no buffering.

170 ILLUSTRATING C

Buffer size is specified by sz. The mode constants, and the special type
size_t, are defined in stdio.h.

• #include < stdio.h >
void setbuf (FILE * 5, char * b);

As setvbufC) but with mode set to _IOFBF and sz set to BUFS1Z. The
constants are defined in stdio.h.

setvbuf (MyStream, MyBuf, _IOFBF, 2048);
setbuf (YrStream, YrBuf);

l/unctions for process control are described under the separate
subheadings:

Termination
Environment
Locale
Error recovery
Signals & exceptions

TERMINATION

TJhe following functions are concerned with terminating a program,
printing explanatory messages and tidying up at exit. Three libraries are
involved.

exit, abort, assert
• #include <stdlib.h>

void exit (int status);

Call exit() to exit a program normally. The function flushes file buffers,
closes files left open. I f you registered a set of functions using atexit(),
these are now invoked in the reverse order of their registration.

Constants EXIT_SUCCESS and EXIT_FA1LURE are defined in stdlib.h for use
as an argument. EXIT_SUCCESS has the value zero.

10: LIBRARY

• #include <stdlib.h>
void abort (void);

Call abort() to exit a program abnormally. The function does not flush
file buffers or call functions set up using atexit().

• #include <assert.h>
void assert (int expression);

A macro intended for program development. I f expression evaluates as
z.ero, certain diagnostics are sent to stderr, then abort() is invoked. You
can disable assert() using macro NDEBUG in the preprocessor.

if (Chaos) abort();
if (! Chaos) exit (0);
assert (Nodes > Edges);

perror
• #include <stdio.h>

void perror (const char * mess);

Prints on stream stderr the message you give as argument. Precedes the
message with the error number currently held by the global variable
errno.

perror ("out of memory");
exit (2);

atexit
• #include <stdlib.h>

int atexit (void (* fun)(void));

When atexitO is invoked it 'registers' the function p>ointed to by fun as a
function to be invoked by exit()- The exit() function invokes all registered
functions in the reverse order of their registration. You may register as
many as 32, possibly more, see local manual for the number permitted.
Registered functions should be simple ones that cause no side affects.

atexit (Second_Func);
atexit (First_Func);

172 ILLUSTRATING C

ENVIRONMENT

TJhe following functions are concerned with a program's environment.
Environment strings may be interrogated and commands to the operating
system executed f rom inside the program.

getenv
• #include <stdlib.h>

char * getenv (const char * Hame);

The name used as an argument is matched against the list of
'environment names' held by the system; fo r example "PATH" or "MYFILE2".
I f a match is found the function returns a pointer to the corresponding
data object, otherwise it returns NULL. Do not attempt to change the static
object pointed to.

p = getenv ("PATH");

system
• #include <stdlib.h>

int system (const char * command) ;

Executes, f rom inside a program, a command addressed to the
computer's operating system. The command should be encoded as a
string. Given NULL as the argument, the function returns non-zero to
indicate the presence of a command processor, zero to indicate absence.

system ("DIR");

LOCALE

M y values in different countries are printed in diverse styles; for
example #5.95 versus J£3-15. Separators and groupings of digits vary, also
the usage of commas and periods. A set of such conventions may be set
up in a C program as a named structure, and these may be picked up
for use in any 'international' functions you may write. A locale has
categories (J accessed by the constants LC_NUMERIC, LC_TIME,
LC_MONETARY etc.]) which may be independently changed.

By default, the structure named C specifies only the use of a period as
a decimal point. Ho Function in the C Library refers to any Locate convention
save that of the decimal point.

The prototypes shown below declare functions for setting conventions for
a locale and interrogating the structure. See ANSI X3.159 for further
information.

10: LIBRARY 173

setlocale, localeconv
• #include <locale.h>

char seHocale (int category const char * Locate);
struct Iconv * localeconv (void);

seHocale (LC_ALL, "C") ;
printfC'Out, damned %s, out I say!\n", localeconv () - > decimaLpoint);

ERROR RECOVERY

TJhe 'goto' statement, which causes a jump to a label in the same
function, can be useful for error recovery but is limited in scope. The
facilities, longjmpC) and setjrnpO, are designed to serve a similar
purpose as the 'goto' and the label respectively, but their use is not
constrained to the scope of a single function.

A macro, setjmpO, is defined in <setjmp.h>. Also defined is an array
type named jmp_buf. On invocation, setjmpO saves its calling environment
in the nominated buffer for use by the next invocation of longjmpC). The
location of setjmpC) serves as the 'label'.

The macro returns 0 if successful.

When a subsequent longjmpC) is executed, control returns to setjmpC).
The second argument of longjmpC) provides an error code which setjmpC)
then returns. The program behaves as though there had been no
interruption to its flow.

To avoid unwanted interaction, calls to longjmpC) should be made only in
simple contexts. A definition of the four allowable contexts, referred to
above as 'simple', may be found in 4.6.L1 of ANSI X3.159.

setjmp, longjmp
• #include <setjmp.h>

int setjmp C jmp__buf saver);
void longjmp C jmp_buf saver^ int value);

if C ErNo = setjmpCMyBuf)==0)
{ normal program }

else
f handle errors: switch CErNo) }

if C Chaos)
longjmp C MyBuf, 1);

174 ILLUSTRATING C

SIGNALS, EXCEPTIONS

Tjfhe signal-h header file provides tools for handling failures, errors and
interruptions, described collectively as 'exceptions'. When an exception
occurs during execution the processor raises a corresponding 'signal'.

The header file defines the following macros for processing signals:

• SIG_DFL default treatment, depends on implementation
• SIG_IGN ignore
• SIG_ERR the value returned by signalC) if signal fails.

The header file defines the following signals:

SIGABRT abnormal termination, as with abor t ()
SIGFPE arithmetic error (such as division by zero)
SIGILL illegal instruction
SIGINT interrupt (typically Ctrl+C f rom keyboard)
SIGSEGV attempted access outside memory range
SIGTERM request fo r termination received by program.

^Jignals are objects of type sig_atomic_J, ex type defined in the header
file. When an exception arises, the corresponding signal is automatically
raised, and 'handled' as specified in the function (J which you may write])
nominated as the second parameter of signal(). This function may, itself,
invoke signalQ in various ways, and may be designed to abort the run
or return to the place where the signal was raised.

Instead of writing a handling function you may call one of the standard
macros SIG 1GN or SIG_DFL fo r ignoring the signal or treating it in the
default manner. After ianoring a signal, control reverts to where the
signal was raised. The default manner' depends on the implementation.

In addition to handling signals you may raise them. A signal is raised by
means of the raise() function.

signal, raise
• #include <signal.h>

void (* signal (int sig^ void (* hndtr)(int))) (int);
int raise (int sig);

The first argument of signaO should be one of the six listed. The
second argument may be the name of a function you have written for
handling the exception, or it may be SIG_DFL or SIG_IGN. When the
nominated exception arises, the associated function or macro is called. I f
the signalC) function fails it returns SIG-ERR.

I f you write a handling function it should have a single int argument for
the signal to be handled and return a value of like type.

10: LIBRARY 175

if (signal (SIGINT, MyHandler) « S1G_ERR);
perror (" signal failure"), exit(l);

signal (SIGFPE, SIGJGN);
raise (SIGSEGV);

l/unctions may be defined with an argument list comprising at least one
argument always present followed by a variable number of 'extra'
arguments. <stdarg.h> provides tools for picking up the extra arguments.
The pointer must have the special type, va_list, defined in the header file.

va_start, va_arg, va_end
• #include <stdarg.h>

void va_start C va_!ist p% name);

Place function at start of extraction sequence. The first argument
declares the pointer, the second is the name of the last fixed argument
in the function.

•include <stdarg.h>
type va_arg (va_list /?, type);

This is obeyed once for each argument extracted, type will be int, float,
double, etc. according to the type of argument to be extracted in each
case.

• #include <stdarg.h>
void va_end (va_Jist p);

Place function at end of extraction sequence. See Page 96 for clarification.

va
va
va

list o
start

_end
(

C
ap,

ap
Counf

);
);

\ffhen one structure points to another of the same type, memory has to
be allocated for the structure pointed to. Memory is allocated from a
'heap' maintained by the processor. Allocation functions specify the number
of bytes required.

I f a pointer to a structure is made to point elsewhere, the structure
formerly pointed to becomes 'garbage', which may be 'freed' and
returned to the heap.

176 ILLUSTRATING C

malloc, calloc, realloc, free
• #include <stdlib.h>

void * malloc (size_t bytes);

The function returns a pointer to a buffer comprising storage of the
specified size. The type of pointer may be indicated by a cast. Size is
measured as a total number of bytes, usually by sizeof() which returns
a value of the required type.

• #include <stdlib.h>
void * calloc (size__t NumELts^ size_t ELtSiz);

The function returns a pointer to a buffer for an array having HurnELts
elements, each of EitSiz bytes. The type of pointer may be indicated by
a cast. The size of element is usually given via sizeof() which returns a
value of the required type.

• #include <stdlib.h>
void * realloc (void * />, size_t newsiz);

Changes the size of an allocated section of memory, pointed to by p, to
the new size of newsiz bytes. I f the new size is smaller than the previous
size, the new content will remain the same as far as it goes. The pointer
should have been established by malloc(), calloc() or realbc() — or it
may be NULL, in which case realloc() behaves like malloc().

• #include <stdlib.h>
void free (void * p);

Frees the section of memory previously allocated, and pointed to by /?,
returning it to the heap. See Chapter 9 for clarification.

p = (Ptr_to_Edgetype) malloc (sizeof (Edge_Type));
<\ - (int *) calloc ([000, sizeof (int));

ijfhe functions described below are for converting values expressed in
character form to values in numerical form and vice versa.

atoi
• #include <stdlib.h>

int atoi (const char * s);

Returns the decimal int value represented by the argument. Equivalent to
the call: (int) strtol (5, (**char) NULL, \0).

prinff ("%i\n", atoi (" -987"));

10: LIBRARY 177

Qtol
• #include <stdlib.h>

long atol (const char * s);

Returns the decimal long int value represented by the argument.
Equivalent to the calh strtol (s, (char**) NULL, 10);

printf (

atof

"%li\n", atoi (" -98765")) ;
f -98765

—p
/

/
• #include <stdlib.h>

double atof (const char * s);

Returns the double value represented by the argument. Equivalent to the
call: strtod (s, (char**) NULL);

LL
printf ("%f\n", atof (" -98.765"));
K • - 9 8 . 7 6 5 0 0 0

strtod
• #include <stdlib.h>

double strtod (const char * 5, char * * / ?) ;

Short fo r 'string to double'. The form of string is expected to be the
following:

wsp sign digits.digits exp sign digits excess

• wsp means optional white space

• sign means an optional + or -

• digits means an optional sequence of decimal digits; at least one
digit must follow the decimal point if there is no digit before it

• exp is E, e, D or d to signify 'times ten to the power...'

• excess signifies any trailing, non-conforming string such as "ABC" in
"-4.5e6ABC".

The function returns the value represented by the string. It leaves p
NULL, or pointing to the start of the trailing string if such exists. I f the
converted value is too big for its type, the function returns the value of
the constant HUGE VAL and sets errno.

char String [] = "-4.5e6ABC";
printf ("%lf", strtod (String, & p));
printf (" %s\n", p) ;

-4500000.000000 ABC

178 ILLUSTRATING C

$\r\oU strtoul
• #include <stdlib.h>

long s\r\o\ (const char * 5, char * * /?, int base);
unsigned long strtoul (const char * 5, char * * />, int radix);

Short for 'string to long' and 'string to unsigned long'. The form of string
is expected to be:

wsp sign 0 x digits

• wsp means optional white space

• sign means an optional + or -

• x means an optional x or X

• digits means a sequence of octal, decimal or hex digits.

• excess signifies any trailing, non-conforming string.

The function returns the value represented by string 5, leaving p NULL, or
pointing to the trailing string if such exists. I f the value is too big for its
type, strtolO returns the value of the constant LONG_MAX or LONG_MIN
according to the sign given in 5, and sets errno; strtoul() returns
ULON6_MAX and sets errno.

The argument, base^ which specifies the number base, may be set from 2
to 36 or to -zero. I f set -z.ero the base is deduced from the initial
characters of s by the following rules: first character 0, next 0 to 7,
implies base 8 (octal); first character 0, next x or X, implies base 16
(hex); first character 1 to 9 implies base 10 (decimal).

char String [] = tf+i2345xxx", * p;
printf (" %] i \ n " , strtol (String, &p, 0));
printf (" % s \ n " , p);
printf (" % l u \ n " , strtoul ("0777", &p, 0));

TJhe mathematical functions are described below under the headings:

Arithmetical
Trigonometrical
Hyperbolics
Random numbers
Modular division
Logarithms & exponentials

: LIBRARY 179

4n\ost of the mathematical functions and macros are defined in the
math.h header but a few are to be found in stdlib.h. These are functions
concerned with:

• absolute values (Jabs, fabs, labs])
• pseudo-random numbers (£ rand, srand])
• modular divisions (J div, Idiv]) .

I f an argument supplied to a function is outside the domain over which
the function is defined, the global variable, errno, is set to the value
returned by macro EDOM. If the value computed by a function cannot
be represented by type double, errno is set to the value returned by
macro ERANGE. In either case the value returned by the function then
depends on the implementation. The value returned by macro HUGE_VAL
may be employed. Check local manuals about domain and range errors.

ARITHMETICAL

abs, Fabs, labs
• #include < stdlib.h >

int abs (int n);
long labs (long w);

• #include < math.h >
double fabs (double d);

Absolute (J positive]) value of the argument.

printf ("%i %i %i \n" , abs (-2), abs(0), abs (2));
printf ("%ti\n", labs (-2);
printf ("%.4f\n", fabs (- .002));

ceil, floor (mm*

l
2 0 2 (

2 / • • -0.0020 /

• #include < math.h >
double ceil (double d);
double floor (double d);

The nearest whole number above the value of the argument, and the
nearest whole number below the value of the argument respectively.

printf (%.2f\n", ceil (2.001))
printf (%.2f\n", floor (2.999)

pow
•include < math.h >
double pow (double double y);

180 10: LIBRARY

The result of x raised to the power y. A domain error if x is negative
and y non-integral. A range error occurs if the computed value is too
big.

printf (

sort

: n%.2f %.2f\n", pow (2,3), pow (2.5, 3.5)) ;
| 8 . 0 0

—'—*

24

-s.

7

.71 /

^J '
• #include <math.h>

double sqrt (double a);

The square root of an argument that must be positive. Domain error if
the argument is negative.

printf ("%.2f %.2f\n", sqrt (0\ sqrt (13.45)); f 0.00 3.61 J

TRIGONOMETRICAL

sinf cos, tan
• #include <math.h>

double sin (double ar);
double cos (double ar);
double tan (double ar);

The sine, cosine, tangent (J respectively]) of an angle measured in radians.

const double pi = 3.1415926;
printf ("%.3f %.3f\n", sin (pi/6), sin (0));
printf ("%.3f %.3f\n", cos (- p i / 6), cos (pi)) ;
printf ("%.3f\n", tan (pi /4));

0 . 5 0 0 0 . 0 0 0

0 . 8 6 6 - 1 . 0 0 0

1 . 0 0 0asin, acos
• #include <math.h>

double asin (double a);
double acos (double a);

The arc sine (J the angle whose sine is.«]) , and arc cosine (J the angle
whose cosine is.-]) . The value returned is measured in radians. For asin()
the range is [-7C/2, +71/2], for acos() the range is [0, 7l]. Domain error if
the argument falls outside the range -1 to +1.

printf i: "%.3f </o.3f\n", asin (0.5), acos (sqrt (3) / 2));

fo. 524 0 .
)

524)

O

i0: LIBRARY 181

atan, oiani
• #include <math.h>

double atan (double a);
double atan2 (double y, double x);

The arc tangent (Jthe angle whose tangent is-.]) . The argument of atan()
specifies the ratio of y to x; arguments of atan2() specify the same
ratio but with y and x independently signed. The value returned is
measured in radians. For atan() the range is [-71/2, +71/2]; for atan2() it
is [-71, +7l].

printf ("%.3f %.3f\n", atan(l), atan2(-l, - l));

HYPERBOL1CS

sinh, cosh, tanh
• #include < math.h >

double sinh (double x);
double cosh (double x);
double tanh (double x);

The hyperbolic sine, hyperbolic cosine, hyperbolic tangent respectively. A
range error occurs with sinh() or coshQ if the computed value is too big.

const
printf

double
("%.3f

d =
%.3f

7.6009025;
%.3f", sinh(d), cosh(d),

f 1 0 0 0 . 0 0 0 1 0 0 0 . 0 0 0

tanh(d)

1.000J

);

RANDOM NUMBERS

rand, srand
• #include <stdlib.h>

int rand (void);

Returns a pseudo random number having a value between zero and the
constant RAND_MAX which is defined in stdlib.h. The starting value (J the
seed]) may be set by a call to function srand().

• #include <stdlib.h>
void srand (unsigned int seed);

When called, the function sets a seed for the rand() function. The seed
is based on the argument given to srand(); if ex program is re-run with
identical seeds, rand() will generate an identical sequence of numbers. In
the absence of any srandO function, srand(l) is implied

srand (10);
printf ("%i %i %i\n", rand(),rand(),rand());

182 ILLUSTRATING C

MODULAR DIVISION

div, IdiY
• #include < stdlib.h >

div_t div (int numy int denom);

The arguments specify the numerator and denominator of a division
operation. The function returns the quotient and remainder of that
operation in a structure of type div_J. This structure is defined in stdlib.h
as:

• #include < stdlib.h >
Idiv t Idiv (long num, long denom);

The function works as described above, but involves long integers. The
structure returned is defined in stdlib.h as:

div_t shorty;
shorty = div (37, 8);
printf ("%i %i\n", shorty.quot, shorty.rem);

fmod
• #include <math.h>

double fmod (double A-, double y);

Returns the remainder of a floating point division, where the division
operation is designed to stop when the quotient reaches the highest
possible integral value, positive or negative.

printf (" %.2f %.2f\n", fmod (36.4, 6.3), fmod (36.4, -6.3));

: LIBRARY 183

modf
• #include <math.h>

double modf (double d^ double * p);

Returns the fractional part of a floating point number, dy leaving p
pointing to a whole number expressed in floating point form. I f d is
negative, both parts are taken as negative.

double Frac, Int;
Frac = modf(-12.34, & Int);
printf ("%.2f %.2f\n", Int, Frac

LOGARITHMS & EXPONENTIALS

log, logl0, exp
• #include <math.h>

double log (double a);
double logl0 (double a);
double exp (double a);

The natural logarithm (£ base e]) of the argument, the base i0 logarithm
of the argument, the natural anti-logarithm of the argument — in other
words e raised to the power of the argument.

const double e = 2.718282;
printf ("%.2f %.2f %.2f\n", log(l), Jog(e), g () ;
printf ("%.2f %.2f %.2f\n", exp(0), exp(l), exp(log(l23)));

0 . 0 0 1 . 0 0 3 . 0 0
1 . 0 0 2 . 7 2 1 2 3 . 0 0

frexp, Idexp
• #include <math.h>

double frexp (double * , int * p);

The composition of binary floating point number x is m times 2 to the
integral power A7, where m is the 'mantissa'. Function frexpO returns the
mantissa of x and leaves p pointing to the integral exponent.

• #include <math.h>
double Idexp (double x, int n);

Function IdexpO returns the product of x times 2 to the power n.

double Man;
int Exp;
Man = frexp (6.3, & Exp);
printf ("%.4f %i\n", Man, Exp);
printf ("%.2f\nM, ldexp(Man, Exp));

184 ILLUSTRATING C

l/unctions for identifying characters ('is it an integer?' etc.) are defined
in header file ctype.h. Functions for converting values from character
representation to numerical representation, and vice versa, are defined in
header file stdlib.h.

isalnum, isalpha* isdigit, isxdigit
• #include < ctype.h >

int isalnum (int c);
int isalpha (int c);
int isdigit (int c);
int isxdigit (int c);

These functions return a non-zero value (true) if the test passes,
otherwise 0 (false). The tests are respectively for:

• isalnum(), cin alphanumeric character, letter or digit

• isalphaO, ex letter

• isdigitQ, a digit from 0 to 9

• isxdigit(), a hex digit, 0 to F (or f)

printf ("%i %i %i %i\n", isalnum(V), isaipha('G'), isdigit(V), isxdigit(V));

isgraph, isprint
• #include < ctype.h >

int isgraph (int c);
int isprint (int c);

These functions return a non-zero value (true) if the test passes,
otherwise 0 (false). The tests are respectively for:

• isgraph(), a printable character excluding a space character

• isprint(), a printable character including a space character

printf ("%i %i %i\n", isprint(V), isprint(' '), isgraph(' '));

is lower, isupper
• #include < ctype.h >

int islower (int c);
int isupper (int c);

10: LIBRARY 185

These functions return a non-zero value (true) if the test passes,
otherwise 0 (false). The tests are respectively for:

• islower(), ex letter from a to z

• isupper(), a letter from A to Z

printf ("%i %i\n", islower('n'), isupper('n')

iscntrl, ispunct, isspace
• #include <ctype.h>

int iscntrl (int c);
int ispunct (int c);
int isspace (int c);

These functions return a non-zero value (true) if the test passes,
otherwise 0 (false). The tests are respectively for:

• iscntrl(), a control character such as that sent from the keyboard
by holding down Ctrl and pressing C.

• ispunct(), a punctuation mark such as ; or : or .

• isspace(), one of the white space characters r ', \ f , \ n , \ r , \ t , \ v

printf ("%i %i %i\n",

tolower, toupper
• #include <ctype.h

int tolower (int

iscntrlC ')), ispunctC*'), isspace(';'));

To 64 0 f

int toupper (int c); (example

Returns the lower case or upper case equivalent of the argument
respectively. I f there is no such equivalent, the function returns the same
value as its argument, treated as type int.

4^\ost of the following functions are defined in string.h, a few in
<stdlib.h>. They concern character arrays and their manipulation. In the
explanations that follow, the phrase 'string s' is used as a short way of
saying 'the array pointed to by s.

186 ILLUSTRATING C

The functions are described under the following subheadings:

• String length

• String copy & concatenate

• String comparison & search

• Miscellaneous strings

STRING LENGTH

strlen
• #include <string.h>

siz.e_t strlen (const char * s);

Returns the number of bytes in the null-terminated string pointed to by 5,
HOT counting the null terminator.

printf ("%r\ n " , strlen (ADC)) ; <

COPY & CONCATENATE

Tfhe library offers several string copying functions, all subtly different in
behaviour.

strcpy, strncpy
• #include <string.h>

char * strcpy (char * sU const char * s2);
char * strncpy (char * 5/, const char * s2% size_t n);

Function strcpyO copies string 5/, including its terminating null, to s2.
strncpyO does a similar job, but copies only n characters. I f a
terminator in s2 is met before all n characters have been copied, the
target string is padded with null characters to the full count of n. The
functions return a pointer to the copied string. For neither function should
the strings overlap.

char S[6];
strncpy (S, "ABCDE", 8);

1(2): LIBRARY 187

merncpy, memmove
• #include < string.h >

void * memcpy (void * bu const void * b2* size_t n);
void * memmove (void * b/9 const void * A?, size_t n);

The objects copied by these two functions are not limited to null-
terminated strings. memcpyO copies n characters from buffer b2 \o
buffer bu returning pointer bL The objects should not overlap.
memmoveO does a similar job to memcpyO but behaves as though the
n characters were first copied from b2 to a private buffer, then copied
from the buffer to bu thus tolerating overlap.

char S[3];
memcpy (S, "ABCD", 3);

strcat, strncat
• #include < string.h >

char * strcat C char * sU const char * s2);
char * strncat (char * $U const char * s2, size_t n);

Function strcat() copies s2 onto the end of sU overwriting the terminating
null of si with the first character of s2. The copied string is not disturbed.
The return value is si. strncatC) does a similar job, but appends only the
first n characters of s2, then adds a null terminator. For neither function
should the strings overlap.

char S[6] = "XY";
strncat (S, "ABC", 2);

STRING COMPARISON

strcmp, strncmp, memcmp
• #include < string.h >

int strcmp (const char * sU const char * s2);
int strncmp (const char * sU const void * s2^ size_t n);
int memcmp (const void * 5/, const void * s2, size_t n);

Function strcmpO compares si and s2^ character by character, until it
reaches the end of both strings or encounters a difference. I f it reaches
the end, the function returns zero; if it encounters a difference it
returns a positive or negative value. The value returned is positive if the
first non-matching character in si is greater (£ treated as unsigned char ^)
than the corresponding character in 5f, otherwise the value returned is
negative. strncmpO does a similar job, but considers only the first n
characters — fewer if a null terminator is met early. memcmp() is similar
to strncmpO but not constrained to work with null-terminated strings.

printf ("%i \n " , strcrnp("ABCDeFG", "ABCDEFG"));

188 ILLUSTRATING C

STRING SEARCH

strchr, strrchr, memchr
• #include <string.h>

char * strchr (const char * s, int c);
char * strrchr (const char * s, int c);
void * mernchr (const void * i>, int c, size_t n);

Function strchr() returns a pointer to the first occurrence of c in 5, or
NULL if it fails to find one. strrchr() is similar to strchr() but returns the
last occurrence instead of the first. In both these functions, '\0' is
included as one of the characters of the string. mernchr() does a similar
job to strchr() but is not constrained to work with null-terminated strings
and considers only the first n characters of buffer b.

printf (

strcspn,

"%s %s\n"

strpbrk,

, strchr(

strspn,

"abba",

strstr

V), strrchr("abba", V)

i
);
bba

/ * — ^ ~

>.
ba S"

• #include <string.h>
size_t strcspn (const char * sU const char * s2);
char * strptrk (const char * 5/, const char * s2);
size_t strspn (const char * sU const char * s2);
char * strstr (const char * 5/, const char * s2);

Function strcspn() returns the number of characters in si encountered
before meeting any of the characters in $2. strpbrkO returns a pointer
to the first character encountered in si that matches any of the
characters in s2. strspn() returns the number of characters in si
encountered before meeting one that is outside the list in s2. Function
strstrO finds the location of sub-string s2 in si and returns a pointer to
its leading character. Returns NULL if there is no match.

sh-tok
•include <strinq.h>

5 leading consonants
ian
4 leading digits
at oats

•include <srnna.h> v*—-^ *~
char * strtok (const char * sU const char * s2);

The function returns pointers to successive tokens constituting the string si.
Characters deemed to separate the tokens are listed in s2. On the first
call to strtokO the first argument should identify the string full of tokens;
on subsequent calls the first argument should be NULL to signify the same
string as before; the terminators may be different on each call. The
function returns NULL when there are no more tokens to deal with. The
original string is overwritten with undefined information.

10: LIBRARY 189

char * p, Line[] = "Para 37.6 :
printf ("%s", p=strtok (Line, ":"))
while (p)

printf (" %s", p=strtok(NULL, "
printf ("\n");

drs = xl / 12.73";
;

/.-"));
/

^Para 37.6 d r s , x l , 1 2 , 7 3 , (n u l l) , L.

MISCELLANEOUS STRINGS

s\rerror
• #include <string.h>

char * s\rerror (int n);

Returns a pointer to a system message corresponding to the error
number given as the argument. The argument is typically the value of the
global variable errno. The content of the message depends on the
implementation.

printf (: "%s\n", strerror(errno));
f Invalid

(
data ^

r \ / example \

rnemset
• #include <string.h>

void * memset (void * b^ int c^ size_t n);

The function sets the first n characters of buffer b to the value c and
returns the pointer you give as the first argument. Make sure b has at
least n characters.

memset (MyBuffer, ' \0', 2048);

strcoll, strxfrm
Functions for comparing the strings employed in particular locales. strcolO
is designed for use where few comparisons are expected; strxfrm() is
for transforming strings such that their transformed versions can be
compared rapidly by strcmp(). See ANSI X3.159 for details.

mblen, mbstowcs, mbtowc, wctomb, wcstombs
The ANSI C library defines a set of functions that work with multi-byte
and 'wide' characters such as those in the character sets of Asian
languages. See ANSI X3.159 for details.

ILLUSTRATING C

Tjfhe following functions typically employ a Quicksort algorithm and 'binary
chop1 respectively, but ANSI X3.159 does not demand any particular
methods of implementation.

qsort
• #include <stdlib.h>

void qsort (void * b* size_t /7, size_t w, comparison);

where comparison is a function call in the form:

int (* / ") (const void *, const void *) ;

The function rearranges the n pointers held in b such that the objects
they point to (each of w bytes) may be accessed in ascending order.
Specify which order by providing a function to compare the objects
indicated by its arguments. Use a library function like strcrnpO or write
your own. The function should return a positive integer if the first
argument points to the greater object, a negative integer if it points to
the lesser, otherwise zero.

char Kids [] [G] = f "mo", "meeny", "eeny", "miny" };
int j , n = sizeof Kids / sizeof Kids[0];
qsort (Kids, n, 6, strcmp);
for (i = 0; i<n, ++i)

printf ("%s ", Kids[i]);
printf (\n);

bsearch
#include <stdlib.h>
void * bsearch (const void * const void *

size_t
£, size__t tf,
wn comparison) ;

where comparison is a function call as defined for qsort().
- * ^ - ^ _ ^ - ^ - ^ — * * - ^ ^ — * * ^ — > ^ - — ^ ^ - ^ ^ ^ ^ ^ _ _ ^ ^ - >

The function searches the first n objects in a sorted array, b, each
element of size w bytes, and compares them with the key indicated by k.
Comparisons employ the function you nominate, the key being associated
with first argument, the array element with the second. I f a match is
found, the function returns a pointer to the matching element, otherwise it
returns NULL If more than one element matches the key, one of them is
pointed to, but which of them is unspecified

char Kids [] [6] - { "eeny", "meeny", "miny", "mo" };
char * Key = "meeny";
printf ("%s\n", bsearch (Key, Kids, 4, 6, strcmp));

10: LIBRARY 191

and

if or the Functions defined in the time.h header file, there are two distinct
representations of time:

• as a type, time_t
• as a structure, struct trn

4\s a type, time_t, time is represented as the number of seconds since
the start of New Year's day, 1972, in Greenwich. The definition of struct
tm is as follows:

(range allows up to two

Leap seconds

/ * seconds after the minute, 0-61 * /
/ * minutes after the hour, 0-59 * /
/ * hours since midnight, 0-23 * /
/ * day of month, 1-31 * /
/ * months since January, 0-11 * /
/ * years since 1900 * /
/ * days since Sunday, 0-6 * /
/ * days since 1st January, 0,365 * /
/ * daylight saving time flag * /

struct tm

int
int
int
int
int
int
int
int
int

tm_sec;
tm_min;
trn_hour;
tm_rnday;
tm_mon;
tm_year;
tm_wday;
tm_yday;
tm isdst;

asctime, ctime
• #include < time.h >

char * asctime (struct tm * t);
char * ctime (const time_t * O ;

Function asctimeC) returns a pointer to a string. The string contains an
encoding of what is represented in the structure indicated by L Function
ctimeO does the same thing, but for an argument of type time__t The
form of the encoding is:

Sun Nov 10 21:21:00 1991\n\0

struct tm MyBirthday = f 0, 0, 10, 28, 1, 30 } ;
printf ("%s \ asctime (& MyBirthday));

Sun F e b 28 1 0 : 0 0 : 0 0 1930clock
• #include < time.h >

docket clock (void);

Returns the time, measured in 'ticks', since the current process was
started. The duration of a 'tick' depends on the implementation; to obtain
the number of seconds, divide the returned value by CLOCKS_PER_SEC,
which is a macro defined in the time.h header file. I f the implementation
does not provide a clock facility the function returns -1 (J cast as type
clock_t J) .

192 ILLUSTRATING C

j = clock () ;
printf ("%i secs\n", (j - i) /CLOCKS_PER_SEC);

/ CLOCK$PERSEC
according to AHSI X3.159-1989

CLK_TCK is the name

some implementations

..pp..
dimime
• #inc!ude <Hme.h>

double difftime (Hrne_t» ^ Kme_t tl);
Returns the number of seconds between the earlier time, tU and the later
time, t2.

Lapse = difftime (Start, Finish);

grntime, localiirne
• #include <time.h>

struct tm * gmtime (const time__t * /);
struct tm * localtime (const Mme_t * O ;

Decodes information contained in the object pointed to by the argument,
t, stores the expanded information in a structure of type struct tm, and
returns a pointer to this structure. The results are based on Greenwich
Mean Time or local time according to the function chosen; see your
particular manual about the implications of GMT and local time.

p = gmtime (& Start);

mktime
• #include <time.h>

time_t mktime (struct tm * p);

Encodes information representing local time, and held in the structure
pointed to by /?, then returns this information encoded as type time__t.
Two of the fields, tm_wday and tm vday, play no part in the encoding.
Returns - l (J cast as time_t]) if the function fails.

time_t Occasion;
Occasion = mktime (& MyBirthday);

time
• #include <time.h>

time_t time (time_t * O ;

Consults the computer's timer. Returns the current date and time encoded
as type time_t I f t is not NULL, the result is also copied to the location /
points to.

10: LIBRARY 193

time_t
time (
printf

TimeNow;
& TimeNow);

("Time is now %s\n", c;time (

1 Time

&

i s

TimeNow

now Thu

));

Dec 19 1 5 : 5 0 : 0 5
(

L99ir

sfrftime
A function for formatting the date and time held in a structure of type
struct tm as a string to your own design. A battery of about twenty
format specifiers is provided; each begins with a percentage sign on the
principles adopted in printf() and scanr() but using multi-byte characters.
The application of strftime() is sensitive to locale. See ANSI X3.159 for
details.

194 ILLUSTRATING C

TJfhis chapter contains summaries of information designed
for quick reference. It contains:

• Operator summary, including a table showing the
relative precedence of operators.

Syntax summary, showing all syntax diagrams
included in the text

Library summary, listing alphabetically the
prototypes of all library functions except those
concerned with multi-byte characters and foreign
locales.

'PRECEDENCE, ASSOCIATIVITY
& SEMANTICS

?

High -*•
•4—

~ *

pr
ec

ed
en

as
so

ci
at

iv

4
4

4
4

1 Z
t -4-

0 [1
J

r
&
A

1
&&
IIv *»

++

%
* &

+=

++ sizeof ^^prefi^\

(g^stj^

PREFIX OPERATORS

+ • +a
• - a

& • &v
* • * p

! • ! m
++ — •

confirmation
negation
address of l-value
pointee of \ object pointed to b
ones' complement ~1110 t p> [H I
logical not (J[1 if n /»/5^ j
increment J decrement])
then use value

INFIX OPERATORS

KEY
1-vaLue
integral l-value
expressions
integral expressionsJ
pointer
member name

> <=

» =

/%757/ZT OPERATORS

OTHER OPERATORS

• a*b product
• a/b quotient
• m%n remainder
• a + b sum (f difference])
• m&n bitwise 7̂/7̂ / (J ^ r]) $ exclusive or 1)
• m « n m shifted left (J right]) n positions
• a,b evaluate & discard a, eval & retain b
• n>m 1 if comparison is truey otherwise 0
• n&&m logical and (J or D
• v = a assign value of a to l-value v
• a +«b short for a=a+b d and similarly J)
• n&=m short for n=n&m ({n=n|nnj) fln=nAmI)
• n«=m short for n=n«m (j[n=n»m])
• v.w member w of structure v
• p->w short for (*p).w

use value, then increment (Jdecrement])

(type-name)
sizeof
sizeof ()
() [1

• m ? a : b
• (double) a
v sizeof v

if m=0 value is a, otherwise b
result is a double (J 'a' undisturbed
size in bytes of object v

sizeof (double) size of every object of type double
() signifies function, [] signifies array

196 ILLUSTRATING C

THE HOTATIOH EMPLOYED
IS DEFIHED OH PAGE 28

character Letter
digit
symbot
escape
space

symbol

??(

l
2
3
4
5
6
7
8
9

decimal,
octal, or\

\hex

Letter

a
b
f
n
r
t
v
\
r

N
V

v

BEIL

35
FF /ASCII
Nt S notation]

/r

a
B
C
c
D
d
E
e
F
f
G
9
H
h
I
i
J
j

k
L
I
M
m
N
n
0
o
P

R
r
S
s
T

t
U
u
V
v
W
w
X
x
Y
/
Z
z

11: SUMMARIES 197

token \ keyword
name
constant
string
operator
punctuator

punctuator

name Letter better
digit

empty

character

w
{ }

keyword

constant
• >

integer
number
enumerator
char-const

or I {long)
•—v—^—v-

or u {unsigned)

double

V
oxx\o
break
case
char
const
continue
default
do
double
else
enum
extern
float
for
goto
if
int
long
register
return
short
signed
sizeof
static
struct
switch
typedef
union
unsigned
void
volatile
while

number y digit , digit digit or f {float))
or L {long double) -

names a constanl
of type int

Letter
digit
symbol
escape

198 ILLUSTRATING C

operator prefix
infix
postfix
other

prefix

&

postfix

other

of an object:
constant I variable, array,'*
string s^S structure, union,]

f ? \ o r enumeration
name

name [expression]

name (expression)

sizeof expression
(type-name)
(expression)

infix

(type)

()

[1

sizeof

(type-name) expression

expression ? expression : expression

(expression)

&&

/=
%=
<<=
>>=
&=
A -

1 =

11: SUMMARIES 199

statement block

if (expression) statement else statement

while (expression) statement

do statement while (expression) ; > statement

fo r (expression ; expression ; expression) statement

switch (expression) statement

case expression : statement

default : statement

break;

continue;

return expression

goto

block { declaration statement }

precisely one
declaration must
be a definition
of main()

program j declaration

200 ILLUSTRATING C

shape

declarator

abstractor

char

float

long double
void

(permutations^
allowed

struct

union

name

name f declaration; }

enurn name { name - expression }

name

empty

(abstractor)

[expression]
^^ . ^

(declaration , «.)

(name)

type
shape
alias

abstractor

11: SUMMARIES 201

GLOBAL OBJECT

declaration extern
static

type
shape
alias

OBJECT IN A BLOCK

declaration auto
extern
register
static

MEMBER OF STRUCTURE OR UNION

DECLARATION \ OF OBJECTS])

declaration type
shape
alias

FUNCTION DEFINITION DECLARATION (f OF FUNCTIONS))

declaration extern
static

type
shape
alias

PARAMETER OF A FUNCTION DEFINITION

declaration register

PROTOTYPE DECLARATION

type
shape
alias

declarator block

declarator

Hote:
const & volatile

omitted from diagrams
see Page 137

declaration extern
static

type
shape
alias

declarator ;

PARAMETER OF A PROTOTYPE DECLARATION

declaration \ register type
shape
alias

declarator
abstractor I

2(2)2 ILLUSTRATING C

Ijjach directive must be on a line of its own

(J possibly extended by 1 \ j | «J |])

preceding the program it is to modify

PREPROCESSOR

preface #define name replacement

•def ine name (name) replacement

#undef name

•include "file"

•include < /ile >

•line constant fibe

l number of ̂
next line

•i f expression preface

•elif expression preface

•ifdef name preface

•ifndef name preface

•endif

replacement token
(replacement)

11: SUMMARIES 203

FUHCTION PROTOTYPES
IN ALPHABETICAL ORDER

Return Function (Prototypes of parameters) Header Page

void
in*
double
char *
double
void
double
double
int
double
int
long
void
void *
double
void
clock_t
double
double
char *
double
div_t
void
double
double

FILE *

int

abort C void) ;
abs C int n) ;
acos (double a) ;
ascHme (struct tm * t) ;
asin (double a) ;
assert (int expression) ;
atan C double a) ;
atan2 C double y, double x) ;
atexit (void (* fun X void)) ;
atof (const char * s) ;
atoi (const char * s) ;
atol (const char * s) ; ^
bsearchCconst void *k, const void*i>, size_t n, size.__t w, comparison}\
calloc C size_t NumEIts, siz.e_t EttSiz) ;

clearerr (FILE * s)
clock (void) ;
cos (double ar) ; ^
cosh C double x) ;
ctlme C const time_t * I)
difftime (time_t ^ , time_t if) ;
div (int nun7, int denom) ;
exit (int status) ;
exp C double a) ;
fabs (double d) ;
fclose C FILE * s) ;
feof (FILE * s) ;

stdlib.h

stdlib.h
math.h

time.h
math.h
stdlib.h

math.h

math.h
assert.h
stdlib.h
stdlib.h
stdlib.h
stdlib.h
stdlib.h

stdio.h
time.h
math.h
math.h
timeJi

time.h
stdlib.h
stdlib.h
math.h
math.h

stdio.h

stdio.h

ill
180
181
192

181
172

182
182
172
178
177
178
191
177
180
166
192
181

182

192

193
183
17!

184

180
165

204 ILLUSTRATING C

Function (Prototypes of parameters)

ferror (FILE * s) ;
fflush C FILE * s) ;
fgetc C FILE * s) ;
Fgetpos (FILE * s, fpos_L * c) ;
Fgets C char * b, int n, FILE * s) ;
Floor (double d) ; ^ ^ ^ ^ ^ ^ ^ ^ ^
Fmod (double x , double y) ;
Fopen (const char * File, const char * mode) ;
FprlntF (FILE * s, const char * FmL, ...) ;
Fputc (int <r, FILE * s) ;
Fputs (const char * i>, FILE * s) ;
Fread (void * &//; size_t />, size_L c, FILE * 5-) ;
Free C void * p) ;
Freopen (const char * file, const char * mode, FILE *
Frexp (double x, int * p) ;
FscanF (FILE * 5, const char * fmt, ...) ;
Fseek (FILE * s, long offset, int origin) ;
Fsetpos C FILE * 5, const fpos_t * p) ;
Ftell C FILE * 5) ;
fwrtte C const void * buF, size_t b, size_t c, FILE *
gete (FILE * s) ;
getchar (vo id) ;
getenv (const char * Name) ;
gets (char * b) ;
gmHme (const time_t *
isalnum C int c) ;
Isalpha C int c) ;
iscntrL (int c) ;

Header Page

stdich
stdio.h
stdio.h
stdio.h
stdio.h
math.h
math.h
stdio.h
stdio.h
stdio.h
stdio.h
stdio.h
stdlib.h
stdio.h
math.h
stdio.h
stdio.h
stdio.h
stdio.h
stdich
stdio.h
stdio.h
stdlib.h
stdich
timeJi
ctype.h
ctype.h
ctype.h

166
165
164
167
167
180
183
165
168
164
168
164
177
165
184
169
166

167

167

164

165
165
173

168

193
185
185
186

205

Return

int
int
int
int
char *
double
double
FILE *
int
int
int
size_t
void
FILE *
double
int
int
int
long
size_t
int
int
char *
char *
struct tm *
int
int
int

l i : SUMMARIES

Return Function (Prototypes oF parameters) Header Page

int
int
int
int
int
int
int
long
double
ldiv_t
struct Iconv*
struct tm *
double
double
void
void *
void *
int
void *
void *
void *

Isgrctpb (int c) ;
Islower (int c) ;
isprJnt C int c) ;
ispunct (int c) ;
isspace (int c) ;
isupper (int c) ;
Isxdlglt C int c) ;
labs C long w) ;
Idexp (double x% int /7) ;
Idiv (long num, long denom) ;
localeconv (void) ;
localHme (const time t * t) ;
log C double a) ;
togI0 C double a) ;
•onfljrop Cjmp_buf savery int Kfl^/e) ;
malloc (size_t bytes) ;
mernchr (const void * b, int c, s ize_t n) ;
memcmp (const void * si, const void * s2, size t n) ;
memcpv (vo id*^/ , const v o i d * M size_t n) ;
mcmmove C void * bj, const void * b2, size_t /7) ;
memse* (void * b, int c, size_t /?) ;

ctype.h
ctype.h
ctype.h
ctype.h
ctype.h
ctype.h

ctype.h
stdlib.h
math.h
stdlib.h
locale.h
time.h
math.h
math.h
setjmp.h
stdlib.h
string.h
strinq.h
string.h
string.h
string.h

185
185
185
186
186
185
185
180
184
183
174
193
184
184
174
177
189
188
188
188
190

time_t mktime (struct tm * p) ;
double modf (double d, double * p) ;
void perror (const char * mess) ;
double pow (double x,. double y) ;
int prlntf (const char * fmt, ...) ;

time.h
math.h
stdich
math.h
stdio.h

193
184
172
180
168

200, ILLUSTRATING C

Function (Prototypes of parameters)

s) ;

Header Page

putc (int c, FILE *
Dutchar (int c) ;
puts (const char * b) ;
qsort (void * b, size_t n, size_t w, comparison) ;
raise (int sig) ;
rand (void) ; ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
realloc (void * p, size_t newsiz) ;
remove (const char * file) ;
rename (const char * old, const char * new) ;
rewind (FILE * s) ;
scanf (const char * fmt, ...) ;
setbuf (FILE * s, char * b
set jmD (jmp_buF saver) ;
setlocale (int category, const char * locale) ;
setvbuf (FILE * s, char * b, int mode, size_t sz
(*signal (int sig, void (* nndlrX'^0)) (int);
sin (double ar) ;
Sinn (double x) ; ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
sprlntf (char * p, const char * fmt, .
sqr\ (double a) ;
srand (unsigned int seed) ;
sscanf (const char * b, const char *
strcat (char * si, const char * s2) ;
strchr (const char * s, int c) ;
strcmp (const char * si, const char * s2)
strcpy (char * si, const char * S2) ;

stdio.h
stdich
stdio.h
stdlib.h
signal.h
stdlib.h
stdlib.h
stdio.h
stdich
stdio.h
stdio.h
stdio.h
setjmp.h
locale.h
stdio.h
signaLh
math.h
math.h
stdio.h
math.h
stdfib.h
stdio.h
string.h
string.h
string.h
string.h

164

164

168
191
175
182

177

166

166
166
169
171
174
174
170
175
181
182

168

181

182
169
188
189

188
187

11: SUMMARIES 207

Return

I
size_L
char *
size_t
char *
int
char *

Ichar *
char *
size_t

|

size_t
char *
size_t
char *
int
char
;har *
:har *
size_t
char
double
char *
long
unsigned long
in* ~
double
double
time_t

(
:ILE *
;har *
nt
int
int
type
void
void
int
int
int

Function (Prototypes oF parameters)

shrcspn (const char * si, const char * $2) ;
strerror (int n) ;
strlen C const char * s) ;
strncat (char * si, const char * s2, size_t n);
strncmp (const char * si, const void * s2, size_t n) ;
strncpy (char * si, const char * s2, size_t n) ;
strpbic C const char * sf, const char * $2) ;
sfrrchr (const char * s, Jnt c) ;
strspn (const char * 5/, const char * s?) ;
strstr (const char * J/, const char * s2) ;
strtod (const char * s, char * * p) ;
strtok C const char * sf, const char * s2) ;
sfrtol (const char * 5, char * * p, int A3.se) ;
strtou) (const char * s, char * * A int radix) ;
system (const char * command) ;
tan (double ar) ;
tanh (double x) ;
time C time_t * t) ;
tmpfile (void) ;
tmDnam C char * nam
tolower (int c);
toupper (int c) ;
ungetc (int c, FILE * s) ;
va_arg C va_list p, tupe) ;
va_end C va^list p) ;
va_start (va_list p, name) ;
vfprintf C FILE * .?, const char * Fmt, va_list ap) ;
vprintf (const char * Fmt, va_list ap) ;
vsprintf (char * p, const char * fmt, va_list ap) ;

Header

string.h
string.h
string.h
string.h
string.h
string.h
string.h
string.h
string.h
string.h
stdlib.h
string.h
stdlib.h
stdlib.h
stdlib.h
math.h
math.h
Hme.h
stdich
stdio.h
ctype.h
ctype.h
stdio.h
stdarg.h
stdarg.h
stdarg.h
stdio.h
stdio.h
stdio.h

Page

189

190
187
188
188

187

189
189
189
189
178

^ 1 8 9
179
179

173
181
182

^ 1 9 3
170
170
186
186
165

176

176
176
169
169

169

208 ILLUSTRATING C

American National Standard for Information Systems
Programming Language - Cn ANSI X3.159-1989

ijfhe Standard defines the dialect of C presented in this
book. National standards can be forbidding documents, and
expensive, but ANSI X3.159 is worth having if you are going
to program seriously in C. The document is beautifully
organized and the prose intelligible. It is not a tutorial text,
but appended to the Standard is a 'rationale' to explain
difficult paragraphs of the Standard and say why certain
library functions were included.

Kernighan, B.W, & Ritchie, D.M. (1988) The C programming
Language^ Second edition. (Prentice Hall)

I^ennis Ritchie invented C; this book is its bible. The first
edition is dated 1978 and remained the only authoritative,
and certainly the best, book on C (J although not the
easiest to read]) until the second edition was published ten
years later. During the intervening decade there must have
oeen an enormous amount of feedback from readers. The
second edition shows every sign of professional
involvement in its authorship, responding to the feedback
and resolving the old ambiguities. The oook is marked 'ANSI
C'. It is a joy to read.

Bakakati, N. (1989) The Waite Group s Essential Guide to
ANSI C, (Howard W. Sams & Co.)

TJfhis is a pocket-sized reference to ANSI C. It covers the
language and keywords, but most of it describes the
library. The description of each library function comprises
a short explanation of its purpose, its syntax, an example
call, a description of what it returns, and a list of names
of related functions. A useful reference for the practical C
programmer.

Italics indicates an ANSI C library function
bold indicates a keyword of ANSI C

Operators

1

I s

#

#

%
% «

&

& &

& =

*

* S5

4-
+ +
+ =

-
- -
->

/

<
<<
<< =

=

>
> =
>>
>> =
?:
A

* =

1
1 =
II

13, 39
40, 46, 196
string-izer, 69
paster,
39, 46,
42, 46,

69
196
196

arithmetical, 41, 46, 196
logical,
40, 46,
42, 46,

8, 44, 46, 80, 196
196
196

arithmetical, 39, 46, 196
reference, 8, 44, 46, 80, 196
42, 46,
39, 46,
43, 46,
42, 46,
43, 46,
39, 46,
43, 46,
44, 46,
127, 129
39, 46,
42, 46,
40, 46,
41, 46,
42, 46,
40, 46,
42, 46,
40, 46,
40, 46,
40, 46,
41, 46,
42, 46,
45, 46,
41, 46,
42, 46,
41, 46,
42, 46,
40, 46,
41, 46,

Directives

196
196
196
196
196
196
196
80, 129, 196

196
196
196

196
196
196
196
196
196
196

196
196
196
196
196
196
196
196

196

#define, 34, 66
#elif,
#else,

71-2
71-2

#endif, 71-2
#if, 71-2
#ifdef, 71-2
#ifndef, 71-2
•include, 6, 72
#undef, 68, 72

abort, 172
abs, 180
absolute value, 22
acos, 181
address, 8, 80-1
aggregate, 130
alias, 31, 130, 134
area of polygon, 54
arguments, 8, 82, 88
arrays, 16, 84-5, 93-4
asctime, 192
asin, 181
assert, ill
associativity, 47
atari, 182
atan2, 182
atexit, ill
atof, 178
atoi, HI
atoL, 178
auto storage class specifier 73-7, 128
automatic versus static, 23

back-slash, 1, 29, 33, 67, 197
Backslang, example, 104-5
Backus Naur form, 28
bibliography, 209
binary

digits, 32, 40-1, 46, 133, 196
I/O, 121-3
trees, 158-60

bit fields, 133
bits, see binary digits
blocks, 3, 12, 13, 36, 75-7, 137
Booklist, example, 131
Boolean, 12
break statement, 36, 58, 59
bsearch, 191
bubble sort, 18
bytes, 121

C, old-style, 38, 137
call by value, 20-1, 82
calloc, ill
case, upper & lower, 4, 33
case statement, 36, 58

210

cast, 45, 71
Cats (utility) , 119
ceil, 180
chaining, 149-53
char type, 15, 31, 32, 134
characters, 15, 29, 33, 100, 197

multi-byte, 109, 190
Christmas, 14, 59
clearerr, lid
clock, 192
closing a file, 117
comma list, 28
command line, 95, 119
compiler, 5, 66
components of C, 27ff
concatenation

of files, 119
of quoted strings, 67

const Qualifier, 34, 73, 81, 137
constants, 33ff

character, 33
literal, 33, 48
named, 33, 34, 89
pointer, 84, 89

continue statement, 36
control, 5lff
cos, 181
cosh, 182
dime, 192

Database, example, 123
decisions, 12-13
declarations

complex, 90
in a block, 76
of parameters, 77
of pointers, 81
outside functions, 74
redundant, 74
style of, 130
syntax of, 136-37
typical, 3, 6-7, 31
versus definitions, 37

deckxra\or, 31, 135
abstract, 135

default statement, 36
defined (preprocess operator) 71
definitions

function, 20
in header file, 70
tentative, 74
versus declarations, 23, 37

demotion, 48
difftirne, 193
digit, 29, 30

directives, 3, 7, 67-72
div, 183
do statement, 36, 52
DOS, 99, 116, 156
double type, 31, 32, 134
dynamic storage, I43ff

concept of, 144

Q
edit, 5
else keyword, see if statement
enum keyword, see enumeration
enumeration, 34, 102, 105, 152
EOF, 99
escape,

from bop, 14, 53
sequence, 7, 29, 197

Euclid's hcf method, 24
execution, 5
exit, 171
exp, 184
expression, 9, 35
extension of name, 4
extern storage class specifier, 73-7, 128

fobs, 180
factorial, 25
fclose, 117, 120, 166
feof, 118
ferror, 118
fflush, 112, 165
fgetc, 108, 165
rgetpos, 167
tgets, 167
FILE, library type, 116, 118
files, temporary, 120
float type, 31, 32, 134
floor* 180
fmod, 183
fopen, 116, 165
for statement, 36, 53
format, 9, 110
fprintf, 168
fputc, 109, 164
fputs, 168
fread, 121, 164
free, 145, 177
freopen, 116, 165
frexp, 184
fscanf, 169
fseek, 122, 166
fsetpos, 167
ftell, 122, 167
function prototypes, see prototypes

211

function, 3, 8, 20
pointer to, 88

fwrite, 121, 164

(3
getc, i08, 165
getchar, 108, 165
getenv, 173
GetNext, input function, 114-5
gets, 112, 168
global scope, 23, 74
gmtime, 193
goto statement, 36, 59

hcf, 24
header 3, 21

file, 38, 70
heap, 144
hidden names, 23
Hooke's law, 18

IDE, 4-5
identifier, 30
if statement, 12, 36, 55
indentation, 13
initialization, 16, 31, 34

in declarations, 37
of loop, 53
of strings, 92

input, 107ff
\n\ type, 31, 32, 134
interest, on bank loan, 2, 22
isaLnum, 185
isaLpha, 185
iscntrL, 186
isdigit, 185
isgraph, 185
isLower, 185
isprint, 185
ispunct, 186
isspoce, 186
isupper, 185
isxdigiL, 185

, 180
Ldexp, 184
M K , 183
letters, 29, 30
linker, 5, 66
list processing, 146
localeconr, 174
Loccdtime, 193
Logl0, 184
&y, 184
long type, 31, 32, 134
iongjmp, 174
loops, 14

counted, 53
escape from, 52
infinite, 14
tested, 52

macros, preprocessor, 68-9
main, 6
malloc, 145, 177
matrix multiplication, 17
mblen, 190
mbstowcs, 190
mbtom:, 190
memchr, 189
memcmp, 188
memcpy, 188
memmove, 188
memseL, 190
mktime, 193
/77^/i 184
Monkey-puzzle sort, 161
moving a file, 118
multi-byte characters, 33, 190, 194

a
name space, 78
names, 30
nesting

of blocks, 36
of braces, 16
of loops, 18
of macros, 69

NULL, 85

keyword, 30, 198
in macro, 78

L-value, 42
label, 36

object code, 5
object

concept of, 30
definition of, 37
global, 74

OOP, 75

212

operating system, 4
operators, 8

access, 129
action of, 49
arithmetical, 38
assignment, 42
bitwise, 39
demotion & promotion of, 48-9
incrementing, 43
logical, 38
precedence & associativity of, 47
reference, 44
summaries of, 46, 196
syntax of, 38ff
sequence, 43

organization, 65ff
output, I07ff

parameters, 8, 88
as pointers, 82
coercion of, 48
counting of, 96
names of, 21

parentheses, in macros, 68
Parlour trick, example, 86-7
parse trees, 90, 91
paster, 69
perror, 172
pointee, concept of, 80
pointer arithmetic, 84-5
pointer

concept of, 80-1
constant, 88
declaration of, 81
to functions, 88

pow, 180
power cables, example, 60
precedence, 47
preprocessing, conditional, 71
preprocessor, 34, 67

purpose of, 66
print format, 110
prints 168
program

concept of, 2-3
processing, 66
syntax of, 36

promotion, 48
prototypes

concept of, 38
in header files, 70

punctuators, 67
putC, 109, 164
putchar, 109, 164
puts, 168

qsort, 191
Qualifier, 34, 73, 81
Quicksort, 62-3, 83

raise, 175, 182
random access, 122
realization, 4
realloc, 177
recursion, concept of, 24
register storage class specifier, 73-7
remove, 117, 166
rename, 118, 166
return statement, 36, 53
reverse Polish, example, 139-41, 148
rewind, 117, 166
ring structures, 154
Roman numerals, 56
Roses, example ring, 156

scan format, 112
scanf, 7, 169
scope,

concept of, 74
of declarations, 37
of variables, 23

semicolon, 7
setbuf, 171
setjmp, 174
setlocale, 174
setvbuf, 170
shape, synonym for type
short type, 31, 32, 134
shortest route, example, 150-3
signal, 175
signed type, 31, 32, 134
sin, 181
sin/?, 182
sizeof operator 45, 71, 145
spacing, see whitespace
specifiers, 31, 110, 113
sprintf, 168
sqrt, 181
srand, 182
sscanf, 112, 169
stacks, 138,

dynamic, 146
statement, 3, 7,

as a block, 36
compound, 12
syntax of, 36

static storage class specifier, 23, 73-7, 128

213

stdin, 15, 116
stdout, 5, 15, 116
strcat, 188
strchr, 189
strcmp, 188
strcolL, 190
strcpy, 187
strcspn, 189
stream, concept of, 108, 116
strerror, 190
strftime, 194
string

arguments, 69
arrays, 93
length of, 100
pointers, 93
terminator, 98
utilities, 98

string-iz.er, 69
strings, 92ff

comparing, 102
concatenated, 67, 101
copying, 101
printing of, 94
quoted, 67

strten, 187
strncat, 188
strncmp, 188
strncpy, 187
strpbrk, 189
strrchr, 189
strspn, 189
^ ^ , 189

/, 178
, 189
, 179

strtout, 179
struct keyword, 134
structures

concept of, 126-7
usage of, 128
syntax of shape, 134

strxrrm, 190
subscripts, see arrays
switch statement, 36, 58
symbol-state table, 56-7
syntax

notation for, 28
of C, 29-46, 134-7
of preprocessor, 67, 72
summary, 197-203

system, 173

tentative definition, 74
time, 193
tmpRle, 120, 170
tmpnam, Y10, 170
token, 4
toiower, 186
toupper, 186
translation unit, 66
traversal, 149, 159

pre & post order, 160
trigraphs, 29, 197
truth tables, 40
type cast, see cast
type, 31, 32, 130, 134

mixed, 49
type-name, 135
typedef statement, 130, 134

0
underscore, 30
ungetc, 109, 165
union keyword, 134
unions, 128, 132
unsigned type, 31, 32, 134

va-arg, 176
va-end, 176
variables, 6
vaj is t (type) 96
va^start, 176
vector algebra, 60
vertical bars, 28
vFprintF, 169
visibility, 37
visibility, concept of, 75
void type, 31, 32, 134

pointer to, 145
volatile qualifier, 73, 137
vprintdf, 169
vsprintf, 169

wcstombs, 190
wctomb, 190
while statement, 36, 52
whitespace, 7, 9, 67

in scan format, 113

tan, 181
tanh, 182
temporary files, 120

zero
padding, 16
ASQI, in strings, 92

214

	Cover
	Illustrating C (Ansi/Iso Version)
	Copyright
	9780521468213

	Acknowledgements
	Contents
	Preface
	1 Introduction
	CONCEPTION�����������������
	REALIZATION������������������
	DISSECTION�����������������
	EXERCISES����������������

	2 Concepts
	DECISIONS
	IF - ELSE����������������
	LOOPS������������
	CHARACTERS�����������������
	ARRAYS�������������
	MATRIX MULTIPLICATION����������������������������
	HOOKE'S LAW������������������
	FUNCTIONS����������������
	CALL BY VALUE��������������������
	RATE OF INTEREST�����������������������
	SCOPE OF VARIABLES�������������������������
	RECURSION����������������
	EXERCISES

	3 Components
	NOTATION���������������
	CHARACTERS�����������������
	NAMES������������
	SCALAR TYPES�������������������
	ON YOUR MACHINE...�������������������������

	CONSTANTS����������������
	LITERAL CONSTANTS������������������������
	STRING LITERALS����������������������
	NAMED CONSTANTS����������������������
	ENUMERATIONS�������������������

	EXPRESSIONS������������������
	STATEMENTS AND PROGRAM�����������������������������
	DECLARATIONS�������������������
	DECLARATION VS DEFINITION��������������������������������
	FUNCTION DEFINITION��������������������������
	PROTOTYPES�����������������
	OLD-STYLE C������������������
	HEADER FILES�������������������

	OPERATORS����������������
	ARITHMETIC OPERATORS���������������������������
	LOGICAL OPERATORS������������������������
	BITWISE OPERATORS������������������������
	ASSIGNMENT OPERATORS���������������������������
	INCREMENTING OPERATORS�����������������������������
	SEQUENCE OPERATOR������������������������
	REFERENCE OPERATORS��������������������������
	OTHER OPERATORS����������������������
	SUMMARY��������������

	PRECEDENCE & ASSOCIATIVITY���������������������������������
	MIXED TYPES������������������
	PROMOTION & DEMOTION���������������������������
	CAST�����������
	PARAMETERS�����������������
	LITERAL CONSTANTS������������������������
	ACTION OF OPERATORS��������������������������

	4 Control
	TESTED LOOPS�������������������
	COUNTED LOOP�������������������
	ESCAPE�������������
	AREA OF A POLYGON������������������������
	SELECTION STATEMENT - IF�������������������������������
	ROMAN NUMBERS��������������������
	SWITCH�������������
	JUMP�����������
	CABLES�������������
	QUICKSORT����������������
	EXERCISES����������������

	5 Organization
	PROCESSING�����������������
	PREPROCESSOR�������������������
	SIMPLE MACROS��������������������
	MACROS WITH ARGUMENTS����������������������������
	NESTED MACROS��������������������
	STRING ARGUMENTS�����������������������
	HEADER FILES�������������������
	FUNCTION PROTOTYPES��������������������������
	CONDITIONAL PREPROCESSING��������������������������������
	SYNTAX SUMMARY���������������������

	STORAGE CLASS��������������������
	OUTSIDE DECLARATIONS���������������������������
	BLOCK DECLARATIONS�������������������������
	PARAMETER DECLARATIONS�����������������������������

	NAME SPACE�����������������

	6 Pointers, Arrays, Strings
	POINTERS���������������
	* OPERATOR�����������������
	& OPERATOR�����������������
	DECLARING POINTERS�������������������������

	PARAMETERS�����������������
	QUICKSORT AGAIN����������������������
	POINTER ARITHMETIC�������������������������
	PARLOUR TRICK��������������������
	POINTERS TO FUNCTIONS����������������������������
	COMPLEX DECLARATIONS���������������������������
	STRINGS��������������
	STRING ARRAYS��������������������
	STRING POINTERS����������������������
	PRINTING STRINGS�����������������������
	RAGGED ARRAYS��������������������

	COMMAND LINE�������������������
	STRING UTILITIES�����������������������
	READ FROM KEYBOARD�������������������������
	WHAT KIND OF CHARACTER?������������������������������
	HOW LONG IS A STRING?����������������������������
	COPYING STRINGS����������������������
	COMPARING STRINGS������������������������

	BACKSLANG����������������
	EXERCISES����������������

	7 Input, Output
	ONE CHARACTER��������������������
	GET����������
	PUT����������
	UNGET������������

	PRINT FORMAT�������������������
	SCAN FORMAT������������������
	EASIER INPUT�������������������
	STREAMS AND FILES������������������������
	OPENING��������������
	CLOSING��������������
	REWINDING����������������
	REMOVING���������������
	RENAMING���������������
	ERRORS�������������

	CATS�����������
	TEMPORARY FILES����������������������
	BINARY I/O�����������������
	RANDOM ACCESS��������������������
	DATABASE���������������
	EXERCISES����������������

	8 Structures, Unions
	INTRODUCING STRUCTURES
	USAGE OF STRUCTURES��������������������������
	ACCESS OPERATORS�����������������������
	STYLE OF DECLARATION���������������������������
	BOOKLIST���������������
	UNIONS�������������
	BIT FIELDS�����������������
	SYNTAX�������������
	TYPE OR SHAPE��������������������
	ALIAS������������
	DECLARATORS������������������
	TYPE-NAME����������������
	DECLARATION������������������

	STACKS�������������
	REVERSE POLISH NOTATION������������������������������
	POLISH�������������
	EXERCISES����������������

	9 Dynamics Storage
	MEMORY ALLOCATION������������������������
	STACKS�������������
	POLISH AGAIN�������������������
	SIMPLE CHAINING����������������������
	SHORTEST ROUTE���������������������
	INTRODUCING RINGS������������������������
	ROSES������������
	BINARY TREES�������������������
	MONKEY PUZZLE��������������������
	EXERCISES����������������

	10 Library
	INPUT, OUTPUT, FILES���������������������������
	LOW LEVEL I/O��������������������
	SINGLE CHARACTER I/O���������������������������
	FILE MANAGEMENT����������������������
	RANDOM ACCESS��������������������
	STRING I/O�����������������
	FORMATS FOR I/O����������������������
	TEMPORARY FILES����������������������
	BUFFERING����������������

	PROCESS CONTROL����������������������
	TERMINATION������������������
	LOCALE�������������
	ERROR RECOVERY���������������������
	SIGNALS, EXCEPTIONS��������������������������

	VARIABLE ARGUMENT LIST�����������������������������
	MEMORY ALLOCATION������������������������
	STRING TO NUMBER�����������������������
	MATHEMATICS������������������
	ARITHMETICAL�������������������
	TRIGONOMETRICAL����������������������
	HYPERBOLICS������������������
	RANDOM NUMBERS���������������������
	MODULAR DIVISION�����������������������
	LOGARITHMS, EXPONENTIALS�������������������������������

	CHARACTERS�����������������
	STRINGS��������������
	STRING LENGTH��������������������
	COPY & CONCATENATE�������������������������
	STRING COMPARISON������������������������
	STRING SEARCH��������������������
	MISCELLANEOUS STRINGS����������������������������

	SORT, SEARCH�������������������
	DATE AND TIME��������������������

	11 Summaries
	OPERATOR SUMMARY�����������������������
	SYNTAX SUMMARY���������������������
	LIBRARY SUMMARY����������������������

	Bibliography
	Index

