DYNAMIC MEMORY

AL LA A TR

e
i
HERCHE | -.\,..;
A{afd 1 \ .\}
hrrury [
=
n-:'
2k
b O e [} T
I '}
braged -
|
:r:u N Sirite '_l._ 1
'\-- b ¥ - - _— \-
.. L
" -k Fi .' a i
il il il il P
= g S R
i
Ricy = :
¥ ca o fr ikl B ., Wadalion
¥ il - i | i [21 ey
| i [:-: i I i P AR T T
i
tekiesn WT [. dep i \
(LY gl f e echion of 2 O ;-
i 1 I =l dA e) shows b : —
1 %
S 11 PR 1 ot 2L il :‘ i
Y ' yitor s e S
e 5 1O I ki I i 230 [Ly’ 1 I =
of RS 1

e S |
¥ i - Bestml |_r_. T, 5 har
Pl ['vpe s
¥ . ' |
[
-— |
f IoFusng g oemar | . - I
1 I ¥ Er exampke. Push{ &)X, "A") - i 3 .

(PARS1ViSoRVERSION))

[Donald icock

Reigate Manual Writers

| CAMBRIDGE UNIVERSITY PRESS

CAMBRIDGE
NEW YORK PORT CHESTER
MELBOURNE SYDNEY

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sio Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521468213

© Cambridge University Press 1992

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 1992

Reprinted (with corrections and in a larger format) 1993
Reprinted 1998

Re-issued in this digitally printed version {(with corrections) 2008

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-46821-3 paperback

ﬂcknowledgements

&&y warmest thanks to the following people without
whom the job of writing this book would have been
lonely and terringng: Paul Burden, for patiently
steering my rambling thoughts from nonsense to sense
during many telephone conversations; Mike Ingham,
for the same thing, and making it worth while to
continue instead of throwing it all in the bin; Paul
Shearing, for his enthusiasm and indispensable help
with production; Andrew, my elder son, for help with
just about everything.

CONTENTS

[Prerace

ﬂNTRODUCTlON

CONCEPT!ON
REALIZATION
DISSECTION
EXERCISES

(Qoncets

DECISIONS

IF - ELSE

LOOPS

CHARACTERS

ARRAYS

MATRIX MULTIPLICATION
HOOKE'S LAW
FUNCTIONS

CALL BY VALUE
RATE OF INTEREST
SCOPE OF VARIABLES
RECURSION
EXERCISES

(Somponents

NOTATION

CHARACTERS

NAMES

SCALAR TYPES
ON YOUR MACHINE...

CONSTANTS
LITERAL CONSTANTS
STRING LITERALS
NAMED CONSTANTS
ENUMERATIONS

EXPRESSIONS

STATEMENTS AND PROGRAM

DECLARATIONS
DECLARATION vs DEFINITION
FUNCTION DEFINITION
PROTOTYPES
OLD-STYLE C
HEADER FILES

OPERATORS
ARITHMETIC OPERATORS
LOGICAL OPERATORS
BITWISE OPERATORS
ASSIGNMENT OPERATORS
INCREMENTING OPERATORS
SEQUENCE OPERATOR
REFERENCE OPERATORS

-

—
So N

12
12
14
15
16
17
18

21
22
23
24
26

27

36

37
37
38
38
38
19
19
39
40
42
43
43
44

vii

OTHER OPERATORS
SUMMARY
PRECEDENCE & ASSOCIATVITY
MIXED TYPES
PROMOTION & DEMOTION
CAST
PARAMETERS
LITERAL CONSTANTS
ACTION OF OPERATORS

SonrroL

TESTED LOOPS
COUNTED LOOP
ESCAPE

AREA OF A POLYGON
SELECTION STATEMENT - IF
ROMAN NUMBERS
SWITCH

JuMp

CABLES

QUICKSORT
EXERCISES

(QreanzaTiON

PROCESSING
PREPROCESSOR
SIMPLE MACROS
MACROS WITH ARGUMENTS
NESTED MACROS
STRING ARGUMENTS
HEADER FILES
FUNCTION PROTOTYPES
CONDITIONAL PREPROCESSING
SYNTAX SUMMARY
STORAGE CLASS
OUTSIDE DECLARATIONS
BLOCK DECLARATIONS
PARAMETER DECLARATIONS
NAME SPACE

@OINTERS, ARRAYS, STRINGS

POINTERS

* OPERATOR

& OPERATOR

DECLARING POINTERS
PARAMETERS
QUICKSORT AGAIN
POINTER ARITHMETIC
PARLOUR TRICK
POINTERS TO FUNCTIONS

45
46
47
48
48
48
48
48
49

51

52
53
53
54
55
56
58
59
60
62
64

65

66
67
68
68
69
69
70
70
7
72
73
74
76
77
78

79

8¢
8¢
8¢
81
82
83
84
86
88

COMPLEX DECLARATIONS
STRINGS
STRING ARRAYS
STRING POINTERS
PRINTING STRINGS
RAGGED ARRAYS
COMMAND LINE
PARAMETER COUNTING
STRING UTILITIES
READ FROM KEYBOARD

WHAT KIND OF CHARACTER?

HOW LONG IS A STRING?
COPYING STRINGS
COMPARING STRINGS
BACKSLANG
EXERCISES

[weur, output

ONE CHARACTER
GET
PUT
UNGET
PRINT FORMAT
SCAN FORMAT
EASIER INPUT
STREAMS mip FILES
OPENING
CLOSING
REWINDING
REMOVING
RENAMING
ERRORS
CATS
TEMPORARY FILES
BINARY VO
RANDOM ACCESS
DATABASE
EXERCISES

Srrucures, unions

INTRODUCING STRUCTURES
USAGE OF STRUCTURES
ACCESS OPERATORS
STYLE OF DECLARATION
BOOKLIST
UNIONS
BIT FIELDS
SYNTAX
TYPE OR SHAPE
ALIAS
DECLARATORS
TYPE-NAME
DECLARATION
STACKS
REVERSE POLISH NOTATION
POLISH
EXERCISES

9¢
92
93

a3
94
94
95
9%
98
98

16¢
190
141
162
104
186

187

168
198
149
189
110
112
114
ile
116
117
117
117
118
118
119
120
121
122
123
124

125

126

129
3¢
131
132
133
134
134
134
135
135
136
138
139
141
142

19

DYNAMIC STORAGE

MEMORY ALLOCATION
STACKS

POLISH AGAIN

SIMPLE CHAINING
SHORTEST ROUTE
INTRODUCING RINGS
ROSES

BINARY TREES
MONKEY PUZZLE
EXERCISES

[k arary

INPUT, OUTPUT, FILES
LOW LEVEL VO
SINGLE CHARACTER 1O
FILE MANAGEMENT
RANDOM ACCESS
STRING 1O
FORMATS FOR VO
TEMPORARY FILES
BUFFERING

PROCESS CONTROL
TERMINATION
LOCALE
ERROR RECOVERY
SIGNALS, EXCEPTIONS

VARIABLE ARGUMENT LIST

MEMORY ALLOCATION

STRING TO NUMBER

MATHEMATICS
ARITHMETICAL
TRIGONOMETRICAL
HYPERBOLICS
RANDOM NUMBERS
MODULAR DIVISION
LOGARITHMS, EXPONENTIALS

CHARACTERS

STRINGS
STRING LENGTH
COPY & CONCATEMATE
STRING COMPARISON
STRING SEARCH
MISCELLANEOUS STRINGS

SORT, SEARCH

DATE AND TiIME

Suommaries
OPERATOR SUMMARY

SYNTAX SUMMARY
LIBRARY SUMMARY

[Biriocrapty

[Ynoex

143

144
146
148
149
150
154
156
158
161
162

163

164
164
164
165
166
167
168
17¢
170
171
171
173
174
175
176
176
177
179
18¢
181
182
182
183

184
185
186
187
187
188

189
19¢
191
192

185
196

197
204

209

210

PREFACE

ﬁhe original C programming language was devised by Demnis Ritchie. The
first book on C, by Kernighan and Rilchie, came out in 1978 and remained
the most authoritative and best book on the subject until their second
edition, describing ANSI standard C, appeared in 1988. In all that time, and
since, the availability and use of C has increased exponentially. It is now
one of the most widely used programming languages, not only for writing
computer systems but also for developing applications.

ﬁihere are many books on C but not so many on ANSI standard C which
is the version described here.

i}his book attempts three things:

® to serve as a text book for introductory courses on C aimed
both at those who already know a computer language and at
those entirely new to computing

® o summarize and present the syntax and grammar of C by
diagrams and tables, making this a useful reference book on C

® (o illustrate a few essential programming techniques such as
symbol stale tables, linked lists, binary irees, doubly linked rings,
manipulation of sirings, parsing of algebraic expressions.

[}or a formal appreciation of C s# ils power, its advantages and dis-
advantages s» see the references given in the Bibliography. As an informal
appreciation: all those I know who program in C find the language
lkeable and enjoy its power. Programming C is like driving a fast and
powerful car. Having learned to handle the car safely you would not
wilingly return to the family saloon.

'ﬁhhe hand-written format of this book has evolved over several years,
and over six previous books on computers and programming languages.
The pages contain the kind of diagram an able lecturer draws on the
blackboard and annotates with encircled notes. Written text has been kept
short and succinct. I have tried to avoid adverbs, cliches, jargon and
unnecessarily formal language.

ﬂ hope the result looks friendly.

[3YEIGATE Donatd AUeocke
Surrey, UK. Bebruary 1992

INTRODWETION

‘ﬁhe introduction starts with the concept of a stored
program. The concept is second nature to anyone who has
Erogrammed anything on any compuler in any language,
ut to a complete novice it can be difficult to grasp. So
o simple program is written in English and then translated
into C.

ﬁhe chapter explains principles of running a C progrom
on the computer. The explanation is sketchy because each
implementation of C has different rules for doing so.
Check the manuals for your own instaliation.

I}inally the program is dissecled, statement by statement.

co.clprlol THE CONCEPT OF A STORED PROGRAM

&F you ask to borrow £5,080 at 15.5% compound interest over 5 years,
the friendly bank manager works out your monthly repayment, M, from
the compound interest Formula:

P xR~ (1+R)N

=

12 ((1+R™M -1))
Vhere:

P represents the principal ({ £5800 in this case)

R represents the rate of interest ({ d.455 is the
absolute rate in the case of 15.5%)

N represents the number of years 5 in this case)

t'i_.l"o work this out the friendly bank manager might use the following
'‘program’ of instructions:

ﬂ Get math tables or calculator ready

8 Draw boxes to receive P]: Rpet [:l N

values for P, Rpct, N. Also

a box for the absolute

rate, R, and a box for R [:] M r————]
the repayment, M

Ask the client to state the three values: Principal (P), Rate
percent (Rpct), Number of years (N)

Write these values in their respeclive boxes

Write in box R the result of Rpct/ied. For Rpct use the value
to be_found in box Rpct ({ don't rub out the content of box
Rpct)

Write in box M the result of the compound interest formula.
Use for the terms P, R, N the values to be found in boxes
P, R, N respectively (don't change anything in boxes P, R, N)

Fe G ®

Confirm to the client the values in boxes P, Rpct, N and the
monthly instaliment read from box M

@ Work out { 12 x value in box M x value in box N) to tell
tell the client how much will have to be repaid.

"'li‘his program is good for any size of loan, any rate of interest, any
whole number of years. Simply follow instructions 1 to 8 in sequence.

2 ILLUSTRATING C

4\ computer can be made to execute such a program, but first you
must translate it into a language the computer can understand. Here is a
transiation into the language called C.

ninclude <stdio.h>
#include <math.h>
int main (void)
Sy :
() main program starts

float P, Rpct, R, M;
int N; m

printf ("\nEnter: Principal, Rate%, No. of yrs\n"); 4{?}

scanf ("%F %f %i", &P, aRpct, &N); %
R = Rpct / 148 <@ ;48

M =P xR x pow(1+R, N) / (12 * (pow(1+R, N) - 1));

printf ("\n£%1.2f, @%11.2F %% costs £%L.2f over %iyears”, P,Rpct,M,N);

printf ("\nPayments will total £%1.2f", 12xMsN);

return 4
i !

ﬁ'he above is a program. This particular program comprises:

* a set of directives to a preprocessor; each directive begins #
e a fuction called main() with one parameter named void.

ﬂ function comprises:

* a teader conveying the function’s name ((main) followed by
* a block

4\ block { enclosed in braces } comprises:

* a set of geclarations ({'drawing’ the little boxes)
s a set of stalements telling the processor what to do)

Bach declaration and each statement is terminated with a semicolon.

"l—,[ihe correspondence between the English program opposite, and the C
program above, is indicaled by numbers 1 lo 8.

?he C program is thoroughly dissected in following pages.

1: INTRODUCTION

R!ALlZAW‘O‘ MAKING A PROGRAM RUN

['l—‘i"he program on the previous page should work on any computer that
understands C.

@nforfunately not all computer installations go about running C programs
the same way; you have to have some understanding of the operating
system, typical ones being Unix and DOS. You may be lucky and have an
integrated development ermvironment (IDE)) such as that which comes with
Turbo C or Microsoft C. In this case you do not have to learn much
about Unix or DOS. You control Turbo C with mouse and menus; it really
is easy to learn how.

megardless of environment, the following essential steps must be taken
before you can run the C program on the previous page.

° “_l—r‘ype. Type the program at the keyboard using the editing facilities
available. if these are inadequate, discover if it is feasible to use
your favourite word processor.

When typing, don’t type main as MAIN; corresponding upper
and lower case letters are distinct in the C language ({ except
in a few special cases)).

Be sensible with spacing; don't split adjacent fotens and don't
join adjacent tokens if both are words or letters;

‘ flo \3' P, Rpct, R, M; FIoaJ\’, Rpct, R, M;

A CaTs FiSrerey

Apart from that you may cram tokens together or spread
them out s over several lines if you like:

float P,Rpct,R,M;intl\N; float P . Rpct
- R

To separate tokens, use any combination of whitespace keys:

return

L’;%] l space j Si]

L gtore. Store what you type in a file, giving the file a name such
as WOTCOST.C ((The .C is added automalically in some environments;
it signifies a file containing a C program in character form, the .C
being an extension of the name proper.

4 ILLUSTRATING C

® Gompile. Compile the program &# which involves translating your C
program info a code the computer can understand and obey directly.

This step may be initiated by selecting Complie from a screen
menu, or typing a command such as cc wolcostc Unix) and
pressing the Return key. It all depends on your environment.

The compiler reports any errors encountered. A good IDE
displays the statements in which the errors were discovered,
and locates the cursor al the point where the correction
should be made.

) Bdil. Edit the .C file and recompile as often as necessary to
correct the errors discovered by the compiler. The program may
stil have logical errors but at least it should compile.

You have now created a new file containing object code. The
file of object code has a name related to the name of the
original file. In a DOS environment it might have the name
WOTCOST.0BJ) { compiled from WOTCOST.C) . In a Unix
environment, if you compiled wotcost.c your object code
would be stored in a.out.

o |1ink. In many environments a simple C program may be compiled
and linked all in one go ({ lype a.out, press Return, and away
we go! }) . In other environments you must link the program to
functions in the standard libraries { pow, printf, scanf are functions
written in C too) . The resulting file might have the name
WOTCOST.EXE (linked from WOTCOST.OBJ) .

° mun. Run the executable program by selecting Run from a menu
or enterng the appropriate command from the keyboard.

° Bxecuﬁon. The screen
now displays:

Enter Principal,

Rate%, No. of yrs.

Enter three items
separated space, tab
or new line. End by
pressing Return.

5000 15.5 5

£5000.00,015.5% costs £125.77 over 5 years

Payments will total £7546.37

The program computes and sends results to the standard
output file ¢ named std.out D This 'file' is typically the screen.

1: INTRODUCTION 5

am OF A C PROGRAM, PIECE BY PIECE

[ﬂere is the compound interest program again == with a litle added for
identification.

[/¥ WOTCOST; Computes the cost of a loan */
#include <stdio.h> W

#include <math.h> =N directives - no semicolon
int main (void) .beaer
{

float P, Rpct, R, M;
int N;
printf ("\nEnter: Principal, Rate%, No. of yrs.\n");
ok) Scanf ("%f %f %", &P, &Rpct, aN);
R = Rpct / 1003
M = PxRxpow(1+R, N) / (12x(pow(1+R, N) - 1));
printf ("\n£%1.2f, @%11.2f%% costs £%1.2f over %i years",P,Rpct,M,N);
printf ("\nPayments will total £%t.2f", 12+xMxN);
return @;

}

/x WOTCOST; loan */ ﬂny text between /x and */ is lreated as

| commentary. Such commentary is allowed
wherever whilespace is allowed, and is similarly ignored by the processor.

sinclude <stdioh>| 1fthe # { which must_be the first non-blank
sinclude <mathh >| character on the line)) introduces an instruction to

1 the preprocessor which deals with organizational
matters such as including standard files. The standard libraries of C
contain many useful functions; to make such a function available to your
program, tell the preprocessor the name of its feader file. In this case
the header files are stdioh ({standard input and output)) and mathh
{mathematical). The header files tell the linker where to find the functions
invoked in your program.

int main (void) @\ C program comprises a set of functions. Precisely
one must be named main so the processor knows
where to begin. The iInt and void are explained later; just accept them
for now. The declarations and statements of the functions follow
immediately; they are enclosed in braces, constituting a block. There is no
semicolon between header and block.

float P,RpctRM; e 'litte boxes' depicted earlier are called variables.
int N3 ariables that hold decimal numbers like 155 are of a
different fype from variables that hold only whole
numbers. These two statements declare that the variables named P, Rpct,
R, M are of type float ({ short for floating point number)) and the

variable named N is of type int short for integer)) . Other types are
infroduced later,

Beclaratz‘ons, such as those above, must all precede the first statement.

6 ILLUSTRATING C

Each declaration and each statement is terminated bz o semicolon. A
directive is neither a declaration nor a statement; it has no semicolon
after it

27 ou have freedom of layout. Statements may be typed several to a
line, one per line, one to several lines. To the C compiler a space, new
ine, Tab, comment, or any number or combination of such things between
statements s= or belween the tokens that make up a statement < are
simply whitespace. One whitespace is as good as another, but not when
between quotation marks as we see here.

significant spaces, reproduced on output page
e
printf ("\nEnter: Principal, Rate%, "No." of "yrs.\n);

ﬁhis is an
invocalion
of printf(), a much-used lbrary function for printing. In some environments
the processor includes standard input and output automaltically & without
your having to write #include <stdioh>

11});

¥

printf ("

characters to be sent to
the standard output stream
- fhonouring spaces;

stands for
Fformatted ’

When printing, the processor watches for back-slash. On meeting a
back-slash the processor looks at the next character for guidance: n says
start a new line. \n is called an escape sequence. There is also \t for
Tab, \f for form feed, \a for ring the bell (or beep) and others.

«ﬂ}'s no good pressing the Return key instead of typing \n. Pressing
Return would start a new line on the screen, messing up the syntax and
layout of your program. You don't wat a new line in the program, you
want your program to generale one when it obeys printF().D

F("%F %F %", & P, & Rpct, & N)3 ﬁihis is an invocation of
scanf (1, & pct, & N) the scanf () Ffunction for

input. For brevity, most examples in this book use scanf(). Safer methods
of input are discussed later.

scanf (" "o, & s

‘comma list’ of addresses of
variables to which values
are lo be sent

the fields
expected from
the keyboard

';I}here is more about scanf() overleaf.

1: INTRODUCTION 7

DI SSECTION OF WOTCOST CONTINUED

i}o obey the scanf() instruction the processor waits until you have typed
something al the keyboard and pressed the return key ({ ‘something’
means three values in this example). The processor then tries to copy
values, separated by whitespace, from the keyboard buffer. If you type
fewer than three values the processor stays with the instruction until you
have pressed Return after entering the third. If you type more, the
processor reads and ignores the excess.

ihe processor now lries to interpret the first item as a floating point
number € %f)).If the attempt succeeds, the processor sends the value to
the address of variable P { & P} <= in other words stores the value
in P. The second value from the keyboard is similarly stored in Rpct.
Then the processor tries to interpret the third item from the keyboard as
a whole number { %i)) and stores this in variable N.

What happens if you type something wrong? Like:

15000 15% 2.5

L e
where the 15088 is acceplable as 15080.00, but the second item involves
an illegal sign, the third is not a whole number.

['l_fhe answer is that things go horribly wrong. In a practical program you
would not use scanf().

Why the ‘&’ in &P, aRpct, &N ? Just accept it for now. The art of C, as
you will discover, lies in the effective use of:

& 'the address of..." or 'pointer to...'

* 'the value pointed to by..." or 'pointee of...'

R=Rpct/i02; ﬁhese statements specify the
=PxRxpow(1+RN)[(12xpow(1+R N)-1)); necessary arithmetic: Rpct/12¢

b means divide the value found
in Rpct by 1#8. The /,*,+,- mean respectively: divide by, multiply by,
add to, subtract from. They are called operators, of which there are
many others in C,

pow (1+R,N) is a function which returns the value of (1+R) raised to the
power N If you prefer to use logs you could write exp(log(t+R)N)
instead. The math library (#include <mathh>)) would be needed in
either case; exp(), log(), pow() are all mathh Functions.

The terms 1+R and N are arguments { actual arguments) for the function
pow(), one for each of that function's parameters § aummy parameters). In
some books on computing the terms argument and parameter are used
interchangeably.

8 ILLUSTRATING C

rprintf ("\n%8.2f,@%.2f%% costs £%.2f over %i years”, P,Rpct,M,N); _‘

lﬁhis is like the earlier printf() invocation; a siring between quotes in
which \n signifies Start a new line on the output screen.

printf (" " s

characters to be printed,
interspersed with format
specifications for values to
printed

comma list of names of)
variables whose values are
to be printed in the
format specified

@uf this time the string contains four format specifications: %8.2f, %.2f,
%.2f, % for which the values stored in variables P, Rpct, M, N are to be
substituted in order. You can see this better by rearranging over two
lines using whitespace:

printf ("\n£ (%8.2f) @ (%.2f }%% costs £ over (%i)years"”
P " Rpct 9 ’);

".L}ake %8.2f as an example. The % denotes a format specification. f
denotes o field suitable for a value of type float <= in other words a
number with a fractional part after a decimal point. The 8 specifies eight
character positions for the complete number. The .2 specifies a decimal
point followed by two decimal places:

Yll2’3|415i21£

2

4\ single percentage sign introduces a format specification as illustrated.
So how do you tell the processor to print an ordinary percentage sign?
Tge answer is to write %% as demonstrated in the printf() statement
above.

l‘—lrhe second ({ and subsequent) format specification is %.2f. How can the
field be zero characters wide if it has a decimal point and two places
after? This is a dodge; whenever a number is too wide, the processor
widens the field rightwards until the number just Fits.

printf ("\nPayments will total £%.2f", N * 12 x M) 'his is
another printf()

invocation with an ‘elastic’ field. This time the value to be printed is given
by an expression, nx12xM, rather than the name of a variable. The
processor evaluates the expression, converts the resuling value ({if
necessary)) to a value of type float, and prints that value in the
specified field.

comma list may conlain
expressions as well as
names of variables

printf (" "

V’\/
retun & | JJust accept it for now: the opening int main (void)
ond closing return @ are described laler.

1: INTRODUCTION 9

EXERCISES

ﬂ [lmplement the loans program. This is an exercise in using the tools
of your particular C environment. It can take a surprisingly long
lime to master a new editor and get lo grips with the commands
of an unfamiliar interface. If all else fails, try reading the manual.

10 ILLUSTRATING C

24
CORCERTS

(Dne of the few troubles with C is that you can't
formally define concept A without assuming something
about concept B, and you can't define B without assuming
something about A. Books on C have a bit in common
with the novel Caich 22.

"Ehe aim of this chapter is to introduce, informally,
enough simple concepts and vocabulary to make
subsequent chapters comprehensible.

?his chapter introduces decisions, loops, characters,
arrays, functions, scope of variables, and recursion.
Complete programs are included to illustrate the aspects
introduced.

Jm LOGICAL VALUES IN C
THERE ARE NO BOOLFAN VARIABLES

ﬂF, in your program, Profit is greater than Loss { Profit and Loss being
names of variables holding values D you may want the program to do
one thing, otherwise another. The expression Eroﬂt > loss is true i the
value in Profit is greater than that in Loss; ‘rue is represented by 1.
Conversely, if the value in Profit is not greater than that in Loss the
expression is false and tokes the value @.

< less than
"Tfhus 95 > 0.0 tokes the value t (f true), greater than
9.5 < 8.0 takes the value 8 (f false). A few or equal to
other logical operators are shown here: == equal to

Operators are defined in Chapter 3 and briefly y ""O', e?ual d*o
summarized on page 196. ogical an

'ﬁhere are no Boolean variables in C 4 you have to make do with

integers; a value of zero represents false; amy non-zero value represents
true.

aiatements concerned with the flow of control @ if, while, do for ? are
based on values of logical expressions: non-zero for frue, zero for false.

[E EE A SELECTION STATEMENT

"l—fhe if statement may be used to select a course of action according
to the logical value (true or false) of a parenthesized expression:

if (expression) statement Telse statement

reducing to a value of
non-zero (rue) or zero (false) j | ¢ (Profit > Loss)

printf ("Hooray!");

if (Profit > Loss) else
printf ("Hooray!");

printf ("Bother!");

true false

Profit > Loss

Bother!
J

Hooray!
(-

R Y
lﬁhe statement s typically a compound statement or block. Anywhere a
statement is allowed a block is also allowed. A block comprises an
indefinitely long sequence, in braces, of declarations { optional)) followed
by statements. Some of the statements may be if statements g a rested
pattern.

12 ILLUSTRATING C

@e careful when nesting 'if ' statements. Try to employ the

ttern

resutting from ‘else if' rather than ‘if if " which leaves ‘elses’ dangling in
the brain. A sequence of if if ' makes it difficult to match the associated

‘elses’ that pile up at the end.

[ln the illustration below, the operator ! means nof. Thus if variable Lame

holds the value 2 { false))

then the expression !Lame tokes the value

1 ((true)). Conversely, if Lame holds a non-zero value ((true)) then
the expression !Lame takes the value ¢ ((False)).
l if (Lame) if ('Lame)
Wak (2); if ('SoSo)
else ~ . if (!Quiet)
if (SoSo)] Gallop (@);
Trot (8); else
else Canter (@);
if (Quiet); else
Conter (@); Trot (8),
else else
Gallop (8); Wak (4)

[Zach ‘else’ refers to the closest preceding ' that does not aready have
an ‘else’, paying due respect lo parentheses. Careful indentation shows which
‘else’ belongs lo which if’, but remember that the processor poys no attention
to indentation. Careless indentation can present a misleading piclure.

lﬂere is a program that uses a Alock in the 'if’ statement as discussed
opposite. The program does the same job as the introductory example
but first checks that all items of data are positive.

(Somplicated logic based on ‘if else’ can be clumsy; we meet more
elegant methods of controt later.

/¥ WOTCOST with data check */

#include <stdio.h >
#include <math.h>
int main (void)

TN N TN TN
the initial int * means the program relurns an

integer to its environment as a signal of success
or faiure; return @; (below) indicales success

float P, Rpct, R, M;
int N3

printf ("\nEnter: Principal, Rate%, No. of yrs.\n");
scanf ("%f %f %", &P, &Rpct, &N);
';f((P>¢)&&(Rpct>¢)&&(N>¢))

f‘ R = Rpct / 188, N
M

PxRxpow(1+R, N) 7 (12x(pow(1+R, N) - 1));

nn

block { printf ("\n£%.2f, @%.2f%% costs £%.2f over %i years", P:Rpct,M,N);
printf ("\nPayments will total %t.2f", 12xMxN);
else
printf ("Non-positive Data");
return g;
2: CONCEPTS 13

m INTRODUCING THE for LOOP
THE MOST VERSATILE OF LOOP STRUCTURES
ﬂl real programs have loops. When o program has finished computing one

persons salary it works through the same set of instructions to compule the
next persons salary, and so on through the payrol. That is a loop.

ﬁ'here are, ‘1
however, 7% Humbug */

different 4inds #include <stdio.h >

of loop. This int main (void)

one is a {

‘counted” loop; int j; ‘

you specify in for (j=@; j<3; ++j) i
advance how printf ("\nWe wish you a merry Christmas");
many times to printf ("\nAnd a happy New Year!");

go round. |

ﬂn this loop, j has a test for continuation (j<3) and stands at zero.
Zero salisfies the test, so round we go, wishing you a merry Christmas.
Then j is incremented by 1 ({ ++j is short for j=j#) to become 1. The
test { j<3) is again safisfied, so round we go for another merry
Christmas. This process continues until j reaches 3, at which stage the test
is no longer salisfied; we dont offer any more merry Christmases; we
drop out of the loop with New Year greetings.

for (expression ; expression ; expression) statement

test before each
entry to the body of,
the loop. Body
entered only if
expression evaluates
to non-zero (true)

wpically an
increment,
Evaluated after
each execution of
the body

’-7* Count characters until new line x/
#include <stdio.h >

y ou can specify an infinite [int main (void)
loop by omitting the second {

expression (implying 1 = int count = @, char Ch;
true)) and get out of the for (; ;
loop with break. {

getc(stdin)
defined on
opposile
page

Ch = getc (stdin);
@ if (Ch=="\n") break;,

else ++count; ’

' : printf ("\nEntry has %i%Chars", count);
llaier we meel tested return g,
loop structures; the while

loop and do loop:

while (expression) statement do statement while (expression)

14 ILLUSTRATING C

CHARACTERS SRR ea ks

Drevious examples illustrated type int ({ inte er)) and float { Aoating-
point number, one that has a decimal point ﬁg Another type is char, short
for character. A character is a letter, digit or symbol.

int i, j o= 1 i] i
| char Ch, k = ‘A, dig = "1 Ch]: k dig

What can we assume about the relationship of characters? Some aspects
depend on the character set employed. In ANSI C:

< b < ¢ et /l:;tﬁ alphabets (lower & upper case)
are stored in ascending order

e '3 < ' < 2" ek digits are slored in ascending
order

digits are stored

2'7+ 37 = 5" ek

contiguously

ral
IA' < IB' < 'C, etc'

llf you work exclusively in the ASCH character set, the following
relationships (not defined in ANSI C) also hold:

<7 ASCH alphabets (not EBCOK)
=S are stored contiguously

L7 [N

» i+ 1 gives j

« 1"+ 1 gives 'J -

* Lt (A -l) gives 'l elc. <&} these relationships hold for
e 'I"+ ('a" - 'A") gives i’ et = EBCDE lelters also

ﬁhhe previous examples featured scanf() and printf() for formatted
items. For input of a single character from the keyboard use getc(stdin),
and for output of a single character to the screen use putc(Ch, stdout).
Both functions are defined in stdio.h. The parameters stdin and stdout
indicate standard input and output streams defined by the system as
depicted below.

Ch = getc (stdin) r* Echo input in CAPITALS (ASCH only) */
#include <stdio.h>
int main (void)

char Ch;
Eor (33)

Ch = getc (stdin);

if (Ch == '}n') break;

if ((Ch > 'a) a& (Ch <= "2'))
Ch=Ch-"a+ 'A%

putc (Ch, stdout);

next cﬁaracm

keyboard buffer gets stored in
nominated character variable

putc (Ch, stdout)

- » - Y
/ the character stored
" in variable Ch is
oLt |
AL

}

return g,

2: CONCEPTS 15

ARRAYS AN ‘OBJECT' COMPRISING ELEMENTS

Lﬁhe little boxes illustrated earlier are individual boxes for values of type
int, float and char. You may also declare arrays of such boxes { arrays
of elements). In any one array all elements are of the same type.

int M[e];§ float Wow[3] = {36, 185, 341; { char Letter[14];
it subscripts float char
Wl run From 81\ Ta1 36 Letter[]

M[1] Wowlt] [18,5 Letter{ 1]
MH Wow[2] __34.8 Letteriz}
M(3 s Letter] 3
M[4] /%} Letter] 4]
M[s] =2 Letter] 5]
Letter| 6]

Letter] 7]

@\n array may be initialized as shown for Letter| 8]
Wow[] above. If you initialize a/ the elements Letter] 9]
you may leave the brackets empty and let Letter|[1a]
the processor do the counting: Letter[1]
Letter[12]

float Wow [] = { 36, 185, 34 };

&F the size is declared you may supply fewer initializing values; the
processor pads out with zeros.

E\rroys may have any number of dimensions. Here is a two-dimensional

array: int 2] [1] [2]
(—int Coeffs [51[31 j Coeffs E?]] : ‘2 f’
[2]] 1 3 3
(3l 1 4 6
'ﬁihe array is stored by rows. [l 1 2

Rulti dimensional arrays may be initialized using nested braces:

int Coeffs[51[31={{1, 1 } {1, 2, 1}, {1, 3 3} {1, 4, 6}, {1, 5 w}}
NN
missing items imply zero

llF you arrange values by rows, and include all of them, you may
ignore the inner braces:

int Coeffs {3l =4{1,1, 8,1, 2 1,1 3, 3, 1, 4, 6, 1, 5, 18 };

16 ILLUSTRATING C

INATRIX@MVLTIPLICATION WG LY

) A PRODUCT
mon—mathemaﬁcians dont go away! This is 61 [11 [2] [3]
business. There are three sales people seling |z [#][5 2 & 18
four products. Quantities sold are tabulated 22 Nl{s3 5 2 s
in Table A: C¥ [l ¢ o o
B fable B shows the price of each product and
. MO'EB] the commission earned by selling each item.

2.80 3.40

Lo a.20 lﬁve money brought in is calculated thus: @
5.00 1.00 K
2.00 450 {ﬂ] 5%1.50+2%2.80 + 0 *3.50 + 10 * 2.00 = 33.18
[

1] 3%x1.50+5%2.80+2%0.50 + 5 * 2.40 = 38.50
nd the commissions 2] 20 %150+ 0% 2.80+0 *x3.50 + & x 2.0 = 33.00

earned thus: @

z [B]5%0.20+ 2 3.40 + @ x 1.00 + 10 +8.50 = 6.80 ﬁ?his computation is
2 [1]3%0.20+ 5% .40 + 2 x 100 + 5 *0.50 = 710 called matrix multiplic-
g [

2] 20%0.20 + @ * B.40 + B ¥ 100 + Bx 850 = 4o QHon and looks best
as set out below.

[2] [1] [2] [3] [2] [1] [2] [1]
Ald] [5 2 o w] X Bl2] [1.50 6207 _, Clo] [33.1@ GM:l

SALES

Al {3 5 2 5 Bl1] |28 o048 | =5 Clt]|3850 7.0
Al2] |20 6 o o B[2] | 5.06 100 Cl2l | 3800 4.00
B[3] | 200 o.50

NSNS
the number of columns of, Q/;e number of rows of B)(and the result has as many rows as
A _must be the same as J,q0 = A & as many columns as B

Klere is a program to input data for matrices A and B, multiply them
together, then display their product, malrix C.

| 7+ MATMUL Matrix multiplication */
#include <stdio.h > P

T N TN T
Float A[31[4], B[4][2], CI[3l[2]; IF using Turb}c‘, 1992, add a
int n, i, j, ks dummy initial statement such as
int main (void) n=sqri(); to force the compiler
{

o’ link the necessary library

for (n=d; n<3; ++n)

scanf ("%f %f %F %F", sAlnllg], sAlnllt], sAlnll2], &Alnl3]);
for (n=@; n<4; ++n)]

‘ s(can; ("%f %F"5 &B[nllg], &B[nll11);, F.s 2 0 10
or =@ i<2; ++i 3 5 5
gor (=835 j<3; ++j) J LZO 0 0 0
+1.50 0.20
L3l = o5 enter B by romsif 11200 9:66
for (k=@; k<4; ++k) 2.00 0.50
Cljlli] += Al;1k] * B[kIlil; 33.10 6.80
38.50 7.10
For (n=g; n<d; ++n) 30.00 4.00

printf ("\n%.a2f %.2f",Clnlle], CInllt1); (program dlsplays
return 4; ¢ by rows

2: CONCEPTS 17

HOOKHSLAW)

&t school we hung little weights on the
end of a spiral spring and measured is
extension. If the spring extended 12mm on
adding a one-gram weight we found it
extended a further 12mm on adding the
next gram. In other words we showed
that extension is proportional to the
force applied.

[xdobert Hooke (f 1635 - 1703)
discovered this law and expressed it in
Latin as ‘ut tensio sic vis' { as the
extension, thus the force)) . Then he
tried to patent his discovery. To establish
ownership before disclosing the secret,
he published an amagram of 'ut tensio sic
vis', made by arranging the letters of
that sentence in alphabelical order.

o

ULUSTRATING NESTED LOOPS
AND ARRAYS OF CHARACTERS

A

vis(g) 1

tensio (mm)

T

A
A

]

[Klere is a program to compile Hooke's anagram. Run the program to see

the anagram he published.

/x Anagram of Hooke's Law */
#include <stdio.h >

T e)

i{nr main (void)

int j, k, Tempry;
for

if (%eﬂer [k-1] >Letter [k])
Tempr
Letter [k] = Tempry;
printf ("\nHooke's anagram is ");
for (j=0; j<t4; ++j)

putchar (Letterf il)
return 2;

Char Letter[14] = {'u" ’t’ 't"'e' ’n" ’s"'i" 'o" 's"’.' LN
%S S EED

(j=0; j<13; Hm

FOI" (k=13; j<k; Z) m

= Letter[k-1];
Letter [k-1] = Letter [k];

ror . 0
1,C, v, 1-5};

Y Iswop

aqjacent
lelters

<=

9Phis program illustrates the technique called ‘bubble sort’ which is suitable
for sorting small lists. For longer lists there are befter methods such as

Quicksort s which is explained on Page 62.

18

ILLUSTRATING C

L:Iere is how the bubble sort works. To keep the illustration simple we
shorten the quotation for uttensiosicvis to utten.

'ﬂ'he outer loop is controlled by j which starts at @ as depicted in the
first row of the table below. k is set pointing to the bottom letter. That
letter is compared with the letter immediately above it (Letter [k-1] >
Letter [k] D . If these two letters are out OF order they are exchanged,
otherwise left alone. Notice that the first two letters to Ze compared n
below, e above)) are in the correct order.

aiill with j set to zero, k is decremented by t so that it indicates the
next letter up. This letter is compared with the letter immediately above it
as before. If the two are out of order they are exchanged. In this case
@ e below, t above) they are out of order and therefore exchanged.

ﬂgain k is decremented so as to indicate the next letter up. Again this
letter is compared with the letter above it and an exchange made if the
lwo are out of order. And so on unlil k has risen lo a position just
below j. That completes the first cycle of j. The lightest letter has now
risen to the top.

[Back to the outer loop; j is incremented so that it indicates the second
letter in the list. k is set to the bottom of the list. Then the whole
procedure, described above, is started again. But this time there is less to
do because k does not have to rise so high. Inthe second cycle of j
the second lightest letter rises to the second position in the list.

ﬂnd so on until the list has been sorted.

k = 4 k = 3 k = 2 k = 1
o
j—=>ofu] j—»@iu j—»0|u j—dju)l e
t{t | OK) 1|.t ! lt)e k ~> 1 e?u
j=0 2{t 2,t)e k—24e”| t 29t
3je e k-—»sae t 3t 3jt (e
k—>4{n |n 4 |ln 4in 4| n(risen
3 lo top
¢fe] gle] 2l e
jJ—>1]u j—1 ju j—1 u; n
j=1 20t 2rt}n k —2Ln* u
3 t)n 34n4 t 3ft
L k — 44 n4]t k-——4 |t 41t
dfe ¢ e
j =2 1 nTOK 1 in ﬁt
j—2fu j— 2 U)tn'sento
31t t k— 3\t u{ No.s
k—>4lt Jt 4Lt
dle
1in
=3 2 (t
1= 34u~t
k— 44 t41 u

2: CONCEPTS 19

MORE CONCEPTS =g
W PARTICULAR THAT OF 'CALL BY VALUE'

ﬁhe inlroductory example used a function from the math library called
pow() (short for power).

expression: ils value) expression: its
ing the value lo §\value being the
be raised power by which
lo raise

Bxample: 2.¢3'¢ would be expressed pow(z.(d, 3.4); the value returned
would be 8..

he parameters of the library function pow() are, in general, both of
'floating” type. In the introductory example, however, the second
parameter was consirained lo whole numbers by being declared of type

int. This constraint is essential to what follows.

name of
Furction

[Klere is the first example again, but instead of using pow() from the
math lbrary we supply and invoke our own function, Powr().

/¥ WOTCOST with home-made Powr() x/

#include <stdio.h > L ot include matht

float Powr (float x, int n) e Feader of home-made
function, Powr()

fFloat v,
for (v=1.8; n>@; n--) (eectarations

= before

Vo= v ok x;
return (v); stalements ‘
float P, Rpct, R, M;
int N;
prinfg E::>?EnteFr: P, Rate%, Nyrs\n");
scanf ("%f %f %', &P, &Rpct, &N); NN
R = Rpct/14d P <
M = PxRxPowr (1+R, N)/(12x(Powr (1+R, N)-1));

home-made
function, Powr ()

<~k main () much as before

int main (void)

printf ("Costs £%12f per month", M); ~
return g;
1 program [Enter P, Rate%, Nyrs
w 5000 15.5 5
j . Costs £125.77 per month
‘program ?7 e
ﬂhe home-made funclion is dissected below:
t float Powr ()5 f "l_]ihe header gives the name of the function
being defined and the type of value the funclion

wil return. If the function returns no value at al, write void.

20 ILLUSTRATING C

Lfloat Powr (float x, int n_) ';l}he header also shows how many
parameters there are, and the type of each. The names of parameters
in the header are names of dummy paromelers 5= private to the block
that follows the header. It does not matter if these names coincide with
names in main { or in any other function that might invoke Powr). In
this example, n could just as well be N &= without confusion with the N
declared in main.

%riable v is private to the function; a local variable.

Outside the function any reference to v would be treated as an error.
But when the program obeys a statement that invokes the function, a new
variable v is created. When the program has finished with the function

having returned a value to the invoking statement) the variable v,
together with its content, evaporates.

LFor (v=t8; n>d; n=n—1ﬂ \riable v is initialized to 18 before the
loop is executed for the first time. If Powr() were invoked with a value
of 3 for n, the body of the loop would be executed 3 times. n=n-1 may
be abbreviated to n-=1 or --n as previously shown.

I:V = v *x x; | ’;L_l\his is the body of the loop. v begins at 1.4. The
accumulating value in v is mullipied by the value found in x { computed
from 1R in this example)) on every circuit of the loop. This statement
moay be abbreviated to v *= x as we shall see.

l:r eturn (V);_‘ ﬁhis is an instruction return is a keyword)) to stop
executing statements of the function and offer the value in variable v as
the value to be returned by this function. The 'return 2’ at the end of a
main() program returns ¢ to its emironment if execution has been
successful.

CALLSBYAVALVE; FUNDAMENTAL 7O C-LANGUAGE

When you write a statement that imokes the function { in this case the
relevant part of that statement is Powr (+R, N) I) you substitute
appropriate expressions for the dummy parameters x and n. Here we
substitute 1+R for x and substitute N for n.

When the processor comes to obey the statement in which you invoke the
function, it works out the value of 1+R ({ this might be 1.1, for example) and
the value of N (f this might be 3, for example). The program then starts
obeying the statement {in the function block} with x initialized to 11 and n
initialized to 3. This concept is known as call by value.

g\lthough you invoke the function with Powr (1R, N) the function is
incapable of changing the content of variables N or R. In general, no
function in C can change the content of a variable offered as an
argument.

4\ function can change the contents of global variables, as demonstrated

on the next page. A funclion can also change values to which pointers
point, but this topic is left until later.

2: CONCEPTS 21

m @? INTRODUCING GLOBAL
& LOCAL VARUBLES

ql}he program in the Ffirst example computed the

N
monthly repayment for a loan, given the size of the PR(1+R)
loan, the rate of interest and the term. But here is M= T TN .
a more difficult problem; a loan of P is to be 2((1+R)"-1)

repayed at M per month over N years; what rate
of interest is being charged?

where R=P /1gd

ﬁhe equation shown above may be solved for R by trial and error.
Guess R, substitute in the formula to compute Mt, then:

o if Mtis the same { very nearly) as M the guess was correct;
accept R

* if Mt is too small it means R was guessed too low, so multiply
the rate by M/Mt to make it bigger and try again

o if Mt is too big it means R was guessed too high, so multiply
the rate by M/Mt to moke it smaller and try again.

ﬁihis algorithm causes the ratio M/Mt to get closer and closer to 1.
Make the program continue as long as the difference between M/Mt and
{ is more than 8.685 € say). The difference may be positive or
negative, so we must ask if its absolute value § value ignoring sign) is
greater than d¢.005.

mere are some global declarations and three functions:

/x WOTRATE: computes rate of loan interest x/
#include <stdio.h >
float P, M, R = .01, <—%_—{variables P, N, M, R declared
int N: <=\ globally (at Ale lz;flerz). A;i is

’ . initialized at 1% before first
float Powr (float x, int n) entry 10 loop

float v

for (v=1.8; n>@; n=n-1)
Vv = Vv Ok X3

return (v);

Vg S
float Formula (void)

computes formula at top of page,

referring to global F, R, N, hence no

need for paramelers. Formula()
imvokes Powr()

Float v;

v = Powr (1+R, N); N7 his v is local lo qumula(}
return(P*Rxv) /(12%(v-1)); (70, comection with v in Powr()

local P —

: o e i)
if(P>=0@.8) return P; 4 more concisely
else return -P; float Absolute (float P)

{return (P<d.8)?-P:P;}

float Absolute (float P)

22 ILLUSTRATING C

I}inally function main():

int main (void)

{
float Mp: &0

printf ("\nPrincipal, Repayment p.m., No.yrs.");

scanf ("%F %F %', &P, &M, &N); rr e
S) e

Mt = Formula(); more concisely
R = RxM/Mt; Rx=M/s M

}
while (Absolute (M /Mt -1) >8.000001) ;.
printf ("\nRate charged is %5.2f%\n", 188+R)3

return 4; 1
program e
Principal, Repayment p.m., No.yrs.
user 3750 195.36 2
Rat i
Drogram ate charged is 16.69%

m @}" VARlABL,!s A FEW FUNDAMENTALS

VQriables P, M, R, N are declared at file level or globally which means
outside every function. Implications of global declarations are:

» the processor reserves space for the variables declared. Declarations
that reserve space are called definitions

» global variables retain the space reserved for them throughout the run.
Their contents do not evaporate during the run

* variables may be referred to by statements in functions provided that:

(i) any reference follows a declaration in the same file (or follows
an extern declaration if in a different file 5% see later)

(ii)the name referred to is not fidden by a local variable (flike
variable P in function Absolute() opposite)).

\Zariable v in Powr(), and variable v in Formula(), have only a
transient existence. Athough v is adeclared in Powr() on the first line after
the header, it is not defined until Powr() is invoked. It then exists only
until control reaches return (v). At this instant control leaves Powr(),
and variable v evaporates, together with its contents. Puff! Next time
Powr() is invoked, variable v could find itsef somewhere else in memory.
Such variables are called automatic to distinguish them from the static
variables which retain identity throughout the run.

2: CONCEPTS 23

DEFINITION OF A FUNCTION TO INTRODUCE
AN IMPORTANT PROGRAMMING CONCEPT
Afhe highest common Factor hcf) of 1478 and €93 is 21. In other
words 21 is the biggest number that will divide into 1478 and 693 without

leaving a remainder in either case. To verify this, factorize both numbers
to prime factors:

2 X X 5 X 7
X 3 X X i1
and pair off an& common factors s» in this case 3 and 7. The highest

common factor { also called the greatest common divisor)) is the
product of these: in this case 3 x 7 = 21

1470
693

non

Buclid' s method of finding the hcf is more elegant. Find the remainder when
1478 is divided by 693. { The % operator gives this remainder D:

1478 % 693 > 84
Because this remainder is not zero, repeat the process, substituting the
second number for the first and the remainder for the second:

693 % 84 I—>= 2
This remainder is still not zero so repeat the process:

84 % 2 = 0

This remainder is zero, so the hcf is 21. Nice!

this works both
when n>m and

Klere is a C funclion based on Euclid's method:

i{nt HCF (int n, int m)

when m>n
J= signifies
int Remainder; fumction HOF NOT EQUAL TO
Remainder = n % m; / imvokes itself
if (Remainder = &)
return HCF (m, Remainder);

return m; int HCF(int n, m) =

{ return n%m?HCF(m, n%m):m}

else

ﬂl is easy to see what would happen with HCF (84,21) because Remainder
would become zero, making the function return 21. But with HCF (1478,693)
Remainder becomes 84, so the function invokes itself as HCF (633,84). In
so doing, Remainder becomes 21, therefore the funclion invokes itself as
HCF (84,21). It is as though C provided a fresh copy of the code of
function HCF() on each invocation.

rlong

long long
HCF(1478,693); HCF(693,84); HCF(84,21);
Remainder = Remainder = Remainder =
1470%693 = 84 693%84 = 21 84%21 = ¢

return

iéHCF(mm,ess)%-%
1

ﬁhe abiity of a function to invoke a fresh copy of itsef is called recursion.

24 ILLUSTRATING C

&F you find the funcltion opposite confusing, here is a simpler example;
the hackneyed factorial:

'Ehe factorial of 5 is 5 x 4 x 3 x 2 x 1 = 12¢. Mathemalicians indicate a
factorial by a post-fixed exclamation mark:

5! = 120
It is obvious that the factorial of 5 is 5 times the factorial of 4:
5! = 5 x 4!

So what is the factorial of n? Clearly:
n!=nx(n-1)!
But that's too hasty. What if n is 1?2 If n is 1 then factorial n is L

'ﬁ'ell this to the computer by encoding:

i n is 1 then factorial n is 1, ,
otherwise factorial n is n limes factorial (n-1)

|

#include <stdio.h >

long int Factorial (long int n)

if (n==1)
return 1;
else
return nxFactorial (n-1);

ﬂnd try out the function by appending a simple main() function:

:fnt main (void))

long int m, k; }
printf (" \nInteger please\n™); Integer please

scanf ("%l", am
k = Factorial(m);
printf (" %L ", k); 2
return g;

? 4

Fm [4]

k m # 1 so m #1 so
compute compute
4 xFactorial (3) 2

which is
2

which is
4 %
so return

so return o return

i

2: CONCEPTS 25

EXERCISES

@rogram MATMUL multiplies matrices of fixed size { 3 rows, 4
columns; 4 rows, 2 columns). Make the program deal with any
specified sizes up to an arbitrary 160 by 122.

Read three sizes: the number of rows of A, the number of
columns of A (implying also the number of rows of B), the
number of columns of B. Read A and B by rows, then print C by
rows. For this exercise you have to change each simple reading
loop to a nested pair of loops. Similarly the printing loop.

8 é\lter the Hooke's Law program to read and sort a list of numbers
t

26

ype double)) into numerical order, then display the sorted list.
Maoke the progbram request the length of list, then ask for the
numbers one by one.

[for the math library functions sin(x) and cos(x), the value of x
must be expressed in radians. Write functions Sine(a) and Cosine (a)
for which the argument, a, must be expressed in degrees of arc.
Al types are double.

Write function Reverse (A, N) to display an array of integers in
reverse order. An obvious way to do this is print A[--N] in a loop
until N stores zero. Instead of using a loop, write the function so
that it employs recursion.

ILLUSTRATING C

3

COMPONRENTS

ﬁ—:'his chapter defines most of the basic components of C.
Their syntax is defined using a pictorial notation. Charac-
ters, names and constants (8 the simple building blocks) are
defined first. Important principles of the language are next
explained; these include the concept of scalar types’, the
precedence and associativity of ‘operators’, the concepts
of 'coercion’ and ‘promotion’ in expressions of mixed type.

l]?he operators are summarized on a single page for
ease of reference.

L'l_fhe syntax of expressions and statements is defined in

this chapter. Declarations are discussed, but their syntax is
not defined because it involves the concept of pointers

and dynamic storage. These topics are left to later chapters.

ROTATAON W4 g 8 iy

?or a precise definition of the syntax of ANSI C, see the definitions in
NSI X3.159. These are expressed in BNF § Backus Naur Form).

ﬁo appreciate the syntaclical form of an entity the practical programmer
needs something different; BNF is not a self evident notation. Some books
employ raiway track diagrams, polentially easier to comprehend than BNF,
but the tracks grow too complicated for defining structures in C. So I
have devised a pictorial notation from which a programmer should be
able to appreciate syntactical forms at a glance. The notation is fairly
rigorous but needs a fittle help from notes here and there.

italics Italic letters are used to name the entities being defined:
digit, loken, integer and so on

m The broad arrow says that the nominated entity 'is
defined to Dbe ..." ('in this example 'An integer is defined

to be ...
Romans, These stand for themselves. Copy them from the diagram
&+ (*xy just os they are. Do not change case; R and r are nof
212 elc. the same letter

Vertical bars contain two or more rows and offer the
choice of one row. Vertical bars may be nested

~~ A Forward arrow says the item or items beneath may be
skipped over; in other words they are oplional. In some
cases a word is written over the arrow: this defines the
implication of skipping the item under the arrow

Backward arrow says you may return to go through this
part of the diagram again ¢ typically choosing another
> item from vertical bars

\ / This also says you may return, butl must insert a comma
. before the next item; it defines a ‘comma list'

Notes may be explanatory or definitive. A typical definitive
note points to expression and says must be integral

> This symbol is put in front of illustrations; it says for
example’ or eg.

28 ILLUSTRATING C

CHARACTERS
letter | <& ﬂhe diagram says:
digit A character is defined

symbol as a leller or digit '
escape or symbol or escape’ symbol s

@pper and lower case letters are distinct digit
in C. Z is not the same letter as z.

Digils @ to 9 are decimal digits. Octal and

hex digits are defined on Page 197.

4\ few characters, such as #, £, @, are available
in most implementations of C. They may be used

as character constants and in strings but are not

defined by ANSI C.

COIOUNPLN S

[;lot every installation can manage the full range of
symbols. The Standard gets round this problem by defining
a range of lrigraphs. If you type ?7?<, for example, the
implementation should substitute the code for a left brace.
And similarly for the other trigraphs. Substitution is carried
out before any other operation on the text.

%n Chapter 1 you saw the escape sequence \n which is
effectively a single character, although compounded of
two. It represents the new line character. It is no good
pressing Return to get a new line character because that
would mess up the layout of the program. You don't wan
a new line in your program; you want the computer to

o

moke a new line when printing results. \n does the trick. %

letter)

)

-

-
=

Y

i P I Y A+ W ¥ >R R YIS NT

ﬂn escape sequence’ is needed whenever the character to be

conveyed would upset something, or has no corresponding
on the keyboard 4= lke Tring the bell".

escape >\

something” is a double

which would close the
quotation prematurely.
can include a double

A Sl adin Bi= BN g o]

\? follows:

vY v vy
e
2

key

[\ example of ‘upsetting
quote in printff (" ")

You

quote
in a quotation as the single
escape sequence \" as

?
w L x| diigit
X

digit | » \#3
GEFTE | s

3: COMPONENTS

NNXYX<XXXEg<<LECTHY VI DVPOUT VOOIZJ I MARQA™MITOOTTOMQAOO OTETD >

N
(o}

INAMES .

"E'he example programs in the first .
chapter illustrate several names name letter letter
invented by the programmer to - digit

identify variables. Such names are
also called icentifiers. Names are
used to identify other things in C
apart from objects such as variables.

) S

?he diagram shows that a rname starts with a lelter or underscore, that
the Ffirst character may be followed by other letters, digits, underscores.
Examples are: LengthOfWall, Lenth_Of _Wall, __DATE__.

lﬁhe name you invent should not clash with a keyword. There are
thirty-two keywords in ANSL C as listed here. Remember that upper and
lower case letters are distinct, so Auto and Break are nof keywords and
may be use as names of variables.

lﬁhe nomes chosen for use in the ' auto
programs of this book are safe from keyword break
clashing with keywords or with names of ‘ case
standard library functions. The names used char
are: const
* single letters eg. i, N gzggzlﬁe
* capitalized words e.g. Length gguble
¢ caopitalized phrases eg. Newlength, Old_Height Z::ﬁm
extern
float
27 ou may not give the same ‘ F%';O
name to an array and to a int Smith[61; %
variable in the same piece of float Smith;g.%/ it
program, long
register
return
ﬂ .) . . short
n general, functions and objects (I ie. variables, arrays, sianed
structures, unions, enumerations D have unique names in s‘ge of
the same piece of program. If an object that is local to s;aﬁc
a function has the same name as a global object, the struct
global object becomes hidden from view. swilch
%t all names behave in this way; names of flags and :};ﬁg: ef
lavels, for example, do not clash; they occupy a unsianed
different name space. Name space is explained in Chapter 5. o dg
volatile
while

KY)/ ILLUSTRATING C

WE MEET AGGREGATES
AND COMPLEX TYPES LATER

4\ typical declaration at the beginning of a program is:

int main (void)

static float a[l = { 15, 25 }
V]

dgeclarator ... with optional
initializers

ﬁhe implications of specifiers, declarators, initializers are far-reaching
and complicated. All are explained in subsequent pages. For the moment,
consider a declaration of a simple scalar %single valued)) variable.

optional
specifier

float b,

ﬁ:["he syntax for scalar fpe is defined as follows:
/N —TTT A

A
signed short int) implies int
unsigned long » long int
Cf?ﬁ?f’j char » signed char
float » float
P
long double » long double
void » void

"l—jhe diagram is simplified for clarity; the syntax of C allows
permutations. For example, the following are all allowed and equivalent:
signed long int, long signed int, signed int long, el.

27 ou can define an alias (synonym) for a phrase using the typedef

Facility :

typedef fpe name

typedef long signed int
Lanky i Js

Lanky ;

instead of signed long int i, j;

3: COMPONENTS 31

oYY OVRIMACHIAE IR

ﬁhe number and arrangement of binary digits { bits)) representing each
scalar type depends on the implementation, subject to certain minimal
requirements if the implementation is to comply with ANSI C. The Following
implementation is typical

unsigned char [OK. for full PC character set

i 7 /]
e
char OK. for ASCH character set
-128 » 127 (<(2") » (27-1))

unsigned int { I] @ —> 65,535
15 0

short int -]] -32,768 = 32,767

i

int [T |] -32,768 > 32,767
[0

unsigned long [] I

| |
3 0
@ —> 4,294,967,295

long £] I I

]
3 0
~2,147,483,648 —> 2,147,483,647
b[a;ed W About 7
/‘ exponent decimal-digit

float V770 T I precision
3 22

|
0
—3.4x18°8 > —3.4x18" 2 > ¢ > +3.4x108"28 > +3.4x18>°

double About 15 decimal-digit precision

77] I T I I |]
6 5 0
8 -308 - 8

-1.7x1¢3¢ —> ~1.7x18 % - @ > +1.7x10 3¢8__} +1.7x1¢3¢

long double About 19 decimal-digit precision

HZZZ22 072277744 | |]]] I] J

79 63 0
-4
-3.4x10"%%% > —3.4x107%% > 8 > +3.4x10

-4932

4932

-5 +3.4X10

32 ILLUSTRATING C

@m DEFINITIONS OF ‘LITERAL’ CONSTANTS

"Ehe infroductory program has the line R = Rpct / 184 The 144 is a
literal constant. TZe program on Hooke's anagram illustrates character

constants, 'u’, 't, efc. These are also literal constants. Named constants
are introduced over the page.

see previous
integer page for :
number

long

char-const >
name unsigned
float

long double

constants &
enumerations

(e B
integer Y| @ digit L e
‘ - l ﬁf"w] zero
U QL » 27 27 decimal
u FW » B33 octal for 27 decimal
» @X1IB tex for 27 decimal
- > > oL zero as a long

a’zgtt ‘ » 270L 27 as unsigned long

octal digits: @, 1, 2, 3, 4, 5, 6, 7T
prex cﬁgils: #, 1, 2, 3, 4, 5,6, 7, 8, 9, A B, C,D, E, F

lower case letters are /
synonymous as digits A s a el double

— s Y
numbery digit . digit | E | |*| digit >0
| - lell-| — |F > 23456
> > 00.001
» 23.4E-6
> 2L
£ says times ten to » 15F
the power Of..
A TN y
char-const L' letter !
digit
f symbol »a’

multi-byte characters
not covered in this

escape » \\' (single bac/(szas/;)
ISTRINCRLITERALS] "STRINGS™ ARE DEFINED N CHAPTER 6

3: COMPONENTS 33

INAMEDICONS TARTS WAMED USING const OR #define

uF your program deals with the /% Program 1 with circles */
geomelry of circles you may write the sinclude <stdio.h > DA
value of m as a literal constant: int main (void) 4,,6“, o

Area = 3141593 * d x d /7 4; A ANS/ C,
double const Pi = 3.141593;

Area = Pixd xd x 7 4,

ﬁhe const is a gualifier. Tt qualifies the variable declared next on its
right. The nominated variable should be initialized in the same declaration.
Thereafter, the processor will not allow you to change the initialized
value s#by assignment or any other means. You may not use this kind of
constant in ‘constant expressions evaluated at compile time.

@r give T a name and value as
shown here:

f'he traditional way to name a C /x Program 2 with circles */
constant is to write' a name { PL say) #include <stdio.h >
and tell the preprocessor to substitute a #define PI 3.141593

value for it. i{nt main (void)

Wrile #define with # as the first
visible character on the line and no Area = PI”x d *x d * 7 4;

semicolon at the end as shown. From /x substitute value for Pl *s
there on the preprocessor will substitute >/
3.141593 for every independent occur- 2

rence of PI { not in comments or PIPE = ¢;
where PIL is part of a longer token) -~
The preprocessor is covered in Chapter 5.

!.UM!]R A*‘Ols NAMING CONSTANTS CALLED ‘ENUMERATIONS *
i) {ipiegral)

enumeration >enum name { name = expression } “name ;
©o 9"

ﬂntegral constants may be named in an emumeration. You may nominate
Int voriables capable of storing int values in the range of the enumeration

pu——

» enum { No, Yes }; <&jsyronyms for & _and 1 _respective.

» enum Boolean { False, True }; <24 defines a type, enum Boolean
» enum Boolean Ok <A declares variable of lype ‘enum Boolean’,
» enum Imperial {Inch=1, Foot=t2¥Inch} L3{L &pe enim Imperial’, may lake
the value Inch (1) or Foot (12)

Ok = (a >b) ? True : False; <G4 variable Ok correctly used in
if (Ok != Yes) break; o range of ils enumeration
Ok =(a>b); <2f probably_allowable

Ok = 2 x Yes; =i 7ot e oul of e

Yes = No; <> error? Yes is a CONSTAN,

34 ILLUSTRATING C

EXPRESSIONS

l}xfpressions are used in earlier examples without formal definition. The

inition of expression is simple:

i

S A

THIS TERM COVERS A
VARIETY OF CONSTRUCTS

~ A
expression ‘Q—term —/pjtﬁy P -a+b=xc
infix

@perators are described individually later in this chapter; here they are
defined syntactically under the names prefix, postfix and infix:

prefix

x

+ pPostfix > ++ @
&

b 3

~ operator's

!

+ see pages 39 Lo 45

_ & summary on page 4é

ﬂn the following definition of ferm, the optional entity
called type-name has yet to be inlroduced; it is defined

on Page 135.
term constant
string
me
of an dhs

7name [expression]

R
name (expression)

4 ¥ — a cast’ or
type-cast
(ype-name) expression

expression? expression : expression
sizeof expression £ w
(type-name)
(expression)

(expression)

| K38

> "Ans: %"
ya

» Table [3][4]

» Powr (1+RN)

PP (double)i

P x<B?-x:x;

» sizeof Table

» sizeof(double)
» sizeof(axb+c)

» (y * (a+b))

3: COMPONENTS

Il/\/\}{\/"

" ==go "=
; LN T

+
L

N %
L

32
)

v A
Y&

'

W
nn

1
v

35

STATEMERTS GIPROCRAM

mere is the syntax of statement. Some control statements have already
been introduced { if, for, break, return), others are covered in
Chapter 4.

if (expression) statement else statement

while (expression) staterment
do statement while (expression); 54 ”uﬂ

for (expression; ‘expression; éxpression;) statement
switch (expression) statement
case expression : statement
default : statement
continue ;
T e
return expression ;
L= -
oto e nominates
S

S name . statement
expression

‘ T
block { declaration statement } » {inti=1;a=20;1}
K_/ ‘_/

@ecause a statement may be a
lock, and because a Alock contains
at least one statement, it follows that
blocks may be ‘nested’. All the
declarations in each block must
ecede the first statement of that

lock . =195
@e!ow is the syntax of program:
rogram declaration rogram comprises a set of
prog raranen 4\ prog pr

declarations, each of which may declare
a global object, a function prototype or a function definition. You must
give precisely one function the name main.

36 ILLUSTRATING C

OF "OBJECTS ' AND FUNCTIONS
D!(LARATV‘O.S (FOR FULL SYNTAX SEE CHAPTER 8)

(Qbjects’ € or 'data objects’) are variables, arrays, enumerations,
structures and unions. We meet structures and unions in Chapter 8.

@b jects are things which have a name and a #pe @ or shape) and can
store data. An object must be declared before it can be used.

@ecause structures and unions have not yet been introduced, the full
syntax of a declaration must wait until later ¢ Chapter 8). Some
examples of typical declar- ot ks

ations of simple types are char Letter[1 = { ‘', b, 'c' }:
shown here: float x = 345; '

Bach declaration applies as far as the end of the current file { the
scope' of the declaration). But in a block of program within this scope,
a contradictory declaration may ‘hide’ the original (fg the 'visibility')). Scope
and visibility are further described below.

D[‘LARAT:‘O. VERSLS m A SEMANTIC DIFFERENCE

When an object is initialized (l eg. float x = 3.45 D the declaration
becomes a definition; any further defining of x would make the
processor report an error during compilation or linking.

ﬂn object declared but not intialized { eg. int i) is, in general,
automatically initialized to zero at the end of compilation as though you
had originally declared int i = d. The object is then defined.

“Ehe differences between declaration ond definition are semantic rather
than syntactic. The differences are, in fact, more complicated than
suggested above, and are further described in Chapter 5.

Im Bm SEQUENCE OF DECLARATIONS

L—F'unction Absolute(), introduced
earlier, is defined again here.
Statements inside this function, and

statements inside functions that f k
follow this definition, may all invoke

Absolute(). Invocations from inside float Absolute (float P)
functions that precede this definition
would be errors. if (P> 04)
return P,
[Referring back to the program on else
Page 22, nolice that function Powr() return -P;
precedes function Formula() in }

which Powr() is invoked, and that
Formula() precedes main() in which

Formula() is invoked. x = Absolute (y);

3: COMPONENTS 37

PROTOT,YP!S PROTOTYPE DECLARATIONS, VITAL TO ANSI C

i]'he restricion on sequence of ;)
declarations explained above may Float Absolute (Float);

be removed by employing a]
function declaration as well as o float Absolute (float P);
function definition.

name optional

8«

4\ function declaration is called a prototype; a concept new to ANS! C.

@l prototype has the same form as the header of a function definition
except:

* names of variables are simply comments; they may be different from
those in the definition or omitted altogether

* every protolype ends with a semicolon.

Each prototype must be placed somewhere before the first invocation of
the corresponding funclion; an obvious place is near the top of the file.

prolotype, outside all .
—-V float Absolute (float);

k = Absolute (2*xa/b);
,

float Absolute (float P)

{if (P>=0.40)

relative location of the ' b.
definition is no longer else refurn

significant
return -P;

OLDSTY LEXC

@rototypes did not exist in ‘old-style’ C. Furthermore, the shape of a
function definition was different, the parameters being declared between
the header and its block. Although this syntox is permitted by ANSI C, it is
not illustrated further in this book.

double OldFun (a, b, c)

int a, b; N5 parameters declared here
char ¢; _32) $

ST

HEADERFFILES

ﬁo keep a program tidy, collect all the prototypes in a file and give
the file a name such as MYHDRH (f where H signifies a feader file)). At
the top of your main program write #include "MYHDRH" which has the same
effect as copying out all the prototypes ahead of the main program.

38 ILLUSTRATING C

OPERATORS ASSHMENT, INCREMENTING, "SEOUNCE

@n Page 35 operators are grouped according to their role in the syntax
of expressions (prefix, infix, postfix]). Here they are classified according
to the kind of work they do.

'ﬁ'he term operand signifies expression, the expression conforming to any
special requirements noted @ such as integral value)

JARITHMETICEOPERATORS - % /o

y +0 Value of operand unchanged

» -pow (2, 16) Value of operand negated

the + as a prefix operator is new to ANS/ C;
it did not exist in the original K & R

operand | + operand » a+b Sum
- » a-b Difference
/ » a/b Quolient
* » ax*b Product
operand | % operand » i % j ‘Modulo’; the remainder

: >, when i is divided by j

m op !RATORs 1 > > < <K= == && | |

[ﬂogical not is a prefix operator

I ! I operand » !Try If Try contains a non-zero
: value (true) then !Try
) indicates a zero value
(false). And vice versa

operand
#=0 =g

o | 1 PEEED

3: COMPONENTS 39

Bach comparison made using the following six infix operators takes the
resut 1 (type int)) if the comparison proves to be true; zero if it
proves false.

operand | > |operand » n > m Greater than (6>5 gives 1))
>= > n>=m Greater than or equal lo
< P n<m Less than (6<5 gives @)
<= P n<=m Less than or equal to
== » n==m Equal to
= » nlil=m Not equal to

ﬁruth tables for the operators 8& @ and) and || ¢ or) are shown.
The symmelry of the tables shows that these operations are commutalive.
For example, i && j gives the same result as j && i;

&&

operand operand » i &8 j Logical and { 2&&3 gives {)
il j Logical or
,’ E——
operand 0, | operand
=] =g 0 =g
ko))
c# @ 1 2 S#40 1 1
S S
$=0 | o ¢ S=0 | 1 ¢

mm OP!RATORS & / N ~ << >>

[ﬂdque operators are vital for screen graphics, for packing and
unpacking data, and other devices of the programmer's craft.

ﬂll operands of bitwise operators must be integral. Because computers
have different ways of representing negalive integers, use bilwise
operators only on the unsigned types.

unsigned int on your installation may be represented as a 16-bit word.
so, 26 will be stored like this:

A

0/ N/ 0/ Doy /oo

/o /09 /) N /
:decgimal W{OQS\%O%%///%///

[ojo]olo]o]o[ololo]ojolf]|f][o]ijo]
14 (binary) = 16 + 8 + 2 = 26 (decimal)

Eero is stored as sixteen @'s. The biggest number { t+2+4+8+16+...+32768
= 65536)) is stored as sixteen f's.

¢ [oJo]Jo]o]o]o]o]e]o]o]olo]o]o]o]o]

65536 [TI1I111[1 T 111

40 ILLUSTRATING C

operand . & .aperana’

» X & XI Bitwise and
| » X1 XI Bitwise or
A » X A X1 Bitwise exclusive or

these operalors are commutative: X & XIJ
gives the same result as AXll & X, and
similarly for the others, as evident from
symmelry of truth tables.

~ | operand > ~X Bitwise ot
operand | << | operand » X <«<N Shift left N places:
right fill with ¢'s
>> » X >N Shift right N places:
: left fill with &'s

#include <stdio.h> %u is the comversion code for
/ unsigned int. dbn ¢ use %i

void main (void)
unsigned int Zero = 4, X = 14, Xi=12;
prth ("\n%u", Zero):

=

Zero [0.9.0.0.0,0.0.0]0.0,0,0,0.0,0.0] opmnd
~Zero [T I 1 T 11 1A 1. 1.0.1.17] g "1°
E?ﬁ?rf ("\n%u”, X & XII); E:>
x [0.0.0,00.0 0. 000 0.0.1.01.0])
& operand
xi1 [0.0,0,0,0,0,0,010,0,0,0,1,1,0,0] £0 =0
#0110
X& Xl [00000.000][000.0.1.0.0.0] g 1571
printf ("\n%u", X | X); 14
x [0.0.0.0.0.0.0.0[0.0.0.0.1.0.1.0] A
XiI [CCo6.0.0.0. 0,000,001 1 0.0] 2 #0 1 |1
j=]
[
X| XI [oo0.000.0l000.01.1.1.0} g=0 1|0
printf ("\n%\n", X" XII); N 6
x [coo00.00.0010.0,0.0.1.0.1.0] A ,2%""’“;‘3
Xi1 [0.0.0,0,0,0,0,0]0,0,0,0,1,1,00] 2#0| 0 | 1
o)
XAXI [00.0.000.0.010.0.0.0.01.1.0] 1-0| (|0

printf ("\n%u %u", X<<i, X>>1);

3: COMPONENTS 41

JASSIC HMERTNOPERATORS oo

['liihe operand on the left of an assignment is typically the name of a
variable or array element.

n = 3; makes sense 3 = n; (s nonsense

YPhe term [-valwe { or ialue)) is short For 'left value' and is used in
the jargon = with blatant disregard for the sanclity of English < to
identify items that make sense only on the left of an assignment.In
general, l-values are names of storage locations 4z or expressions that
point to slorage locations 4z in which the content may be altered. We
meet pointers later.

operand I = l operand w»n =m Assigns value of right
‘L ! ! operand to the location

identified by the left
% operand
@ ‘puts value into n')

operand | += | operand w» n +=m Short for n=n+ m
- P n-=m n=n-m
*= P nox=m n=nzxxm
= »n/=m n=mny/m
%= »n %= m n=n%m
operand | &= | operand w» i &= j Short for i =1 & j
t A= ’1A=j izi/\j
, |= »il= i=1] j
integral <<= > i <<= j i=1<«<j
{~vale >>= > io>>= i=i>j

ﬂF you include one of the above assignments as a lerm in a larger
expression the term contributes the value assigned. Thus in the expression:

4+ (n=aqalil)
';l:[ihe term (n = alil) contributes the value assigned to n. If array
element a[i] contained 3, this 3 would be assigned to n, and the value
of (n=alil) would be 3.

?he value of the whole expression would therefore be 4 + 3 = 7.

42 ILLUSTRATING C

INCREMERTIMCIOPERATORS -

llncrementing operators are special assignment operators. Each may be
used as a prefix operator or posifix operator, the behaviour being
different in each case.

b+] operand > +H Short for i

- » —i Short for i
d [~value

ﬂf you include i++ as a term of a larger expression, the original value
of i is taken as the value of the term. Similarly for i-—-.

nou
j
—

P i+t Short for i
> i Short for i

++

i+
i-t

operand
%

. B :
L-value

ﬂF you include ++ as a term of a larger expression, the incremented
value of i is taken as the value of the term. Similarly with —-i the
decremented value is taken as the value of the term.

‘ﬁ‘he following program demonstrates the difference in resut between
prefixing and postfixing the operator.

—

#include <stdio.h >
int main (void)

int p, q; A 4,

- . ” p "
p = ga " bump it, then use it”
q = 2%

.
A

printf ("\n% %", p, q J;

twice the
incremented value

g T
p =63 ‘use it, then bump it"
Q = 2% '++;
. ors ors M R
printf ("\n%i %7 P, q)3 twice lhe original
return g;

value

}
ISEIQUENCEROPERATOR , USEFUL IN THE PARAMETERS

OF A for LOOP

operand | . loperand » n=3 m Evaluate & discard n=3, value
: of expression is value of m

lypically an
asstignment

Lﬁhe expression comprising the first operand is evaluated { any side
effects being implemented) and the value of the expression discarded.
Then the second operand is evaluated, its value being made the value
of the complete expressicn.

3: COMPONENTS 43

REFEREMCEJOPERATORS P

';L}he reference operalors are concerned with pointers and structures.
These topics are introduced later. Here, for sake of completeness, are
definitions in mechanistic terms.

i Pt
i 1024
10280| 3.14
& I operand &Q The address of a 1932
—J : 936
prefix 1040
* operand *p The 'pointee’ of ... (My terminology,
analogous to ‘appointee”)

identifies

pointer assume the 1028 1028 Q& |3.14
variable got there by 1032
p = 2a;
1036
NOTE 1042
*&a SAYS THE SAME THING AS a P
@ *& cancels itself out)

absolute addresses are seldom of interest, so:
P — w2k

*p ({ the pointee of p) is 3.14

operand | . Ioperana’ s.n Member named n of

structure identified by s
structure \ s ‘m
memoer, .
points to a nizg
/ structure / o[] (< is 2718)

operand | -> I operand p->n Member named n of
: : the pointee of p where
' ' p points to a structure

NOTE P -m [:l

p->n IS SHORT FOR (*p).n

nominates a

porentheses essential; precedence) :]

would make *p.n imply *(p.n)

44 ILLUSTRATING C

Gﬂ}m OPERATORS IR IRNE7-) (:’\:) [7*1 sizeof

[}irst the ternary operator; exceedingly useful. Al three operands are
expressions, the Ffirst of which is integral

operand ? operand : operand pmox = i>j ? axb : cxd;

@nly one of the last two
expressions is evaluated; the
resut becomes the value of

the entire expression (assigned
to max in the example above)

hfreturns -x if x is negalive,
olherwise relurns +x

i}he ‘cast’ § or 'type cast') involves a prefix operator: ﬁ(@
(type-name) operand » AbsVal ((double) (2*i))

NS nominates the type to which the value of the operand is to be
corverted before use.

@arentheses constitute a postfix operator, establishing that the operand is
a function.

?ouble AbsVal (double x)

return x < g ? -x : x;

i
operand (") » AbsVal (d)
ow 3 Function
7 identifies i/m‘de these parentheses : iF:ﬂ * ((30’1 d)> with no
a function) / the compiler lreals parameters
comma as a separalor; returning
never as a sequernce pointer lo int

operator

@rackets constitute a postfix operator for subscripting the array identified
by the operand.

operand [m] » int o[] = {10, 2¢, 32};
» ali+ 1]

K identifies an p int (%) [] =
array

?refix operator, sizeof, is for discovering the number of storage units
bytes) occupied by a particular object or by an object of particular
type. This operator is used fgr/‘dynamic storage (Chapter 16) .
expresseion

not evaluated) J p- sizeof a
identifies an
object

pointer o
array of

sizeof operand

» sizeof (double)
p sizeof (struct s)

sizeof (char) tas the
value /

3: COMPONENTS 45

sizeof (4ype-name)

after sizeof, the compiler
never treats () as a

OPERATOR W PREFIX, INFIX, POSTFIX OPERATORS

[Key: v, i nominate objects that are l-values feg. v or *p).
In the case of i, the type of lvalue is integral
b, m, n stand for expressions which reduce to numerical

values ({ integral values in the case of m and n)
nominates ({or otherwise indicates)) o pointer variable
nominales a member of a structure or union.

prefix Y + > +a confirmation
— - > -a negation
& > &V address of
% » xp the pointee of { object pointed to by)
~ | » ~m ones’ complement { 1022100 > sit1esnt)
! » Im logical NOT (1 if m is FALSED
++ p» ++i increment i before using its value
- p —-i decrement i before using its value
e * »axb roduct m [elife]1 m [a] 1]d[1
| fix / »asb Suotient n [1l1{9]0 n [1]1]0]e
% »m%n remainder mén|oi@ 1|8 min [1[1j81
+ a+b sum
- :a-b difference m (@ol1iell
2 »man bitwise AND n 111]/0|®
pmln bitwise OR min (1lo]d]1
A »m*n bitwise EXCLUSIVE OR
<< »m<<n m shifted n positions left, right fill with @'s
>> »m>>n m shifted n posns right, left fill type-dependent
, »a,b evaluate and discard a, evaluate and retain b
> »a>b t if a greater than b... @ otherwise
>= »a>b 1 if a grtr than or equal to b...# otherwise
< pa<b 1 if a less than b... 8 otherwise
<= pa<=b 1 if a less than or equal to b... d otherwise
. pa==b 1 if a equals b... 8 otherwise
1= »al=b 1 if a is not equal to b... # otherwise
& »Mma&n 'OgiCO’ AND
»m]||n logical OR
Ll >v=||a asgsign value a to object v m&&n | nto n=o
= pv*=q short for v = vxa med) {0
- »v/=a short for v = vsa m=¢| § @
%= »i%=m short for i =i%m
= »v+=a short for v = v+a
—= »v-=a short for v = v-a mlinin#s -0
= pig=m short for i = iam Mm@ L 1
- »i|=m short for i = i|m m=0|1 ¢
= »irt=m short for i = i*m
>>= | pi>>=m short for i = i>>m
<= | pi<<=m short for i = i<<m
. V. W member w of structure v
- »p->w short for (xp).w
postfix ++ » i+t use value of i, then increment
» i—- use value of i, then decrement

46 TLLUSTRATING C

PRECEDENCERZAVASSOLIATIVILTY, OF OPERATORS

What does a+b%c mean? (a+b)%c or a+(b%c)? The question can
be asked another way: which of + and % takes precedence? The following
table shows the precedence of all operators; those in the top row toke
precedence over those in the second, and so on. In any one row, all
operalors have equal precedence.

What does asbsc mean? (a/b)/c or a/(bsc)? Try 8/4/2 both
ways and see the difference.) This question can be asked another way:
When successive operators have egual precedence, in which direction are
parentheses applied? Left to right or right to left? The required direction
is the associativity. The table shows by an arrow the direction of
associativity { left to right or right to left) at every precedence level

ﬂn the placing of parentheses, precedence is relevant where successive
operators are found in different rows of the table; associativity is
relevant where successive operators are found in the same row of the
table.

OPERATORS
A A
HEH » (‘ejpf/)[expr 1 ++ -_) -
< |!@ < - + * 2 ++ - sizeoF
» %
» |+ -
P | << >
98- -
E > == =)
CRIINN
i
=) B
| &&
| A
< = k= /= A = - <<= >>= &= = Az
Low)
Bxample: precedence Bxample: associativity R 2 L
5+ -3 x 4 > -8 a*xb=ci+=d /= e
5+ (<3) x 4 > (-8) ax=b=c+(dvsme)
5+ ((-3) x 4) > (-8) axbz=(c+=(drsm=e))
(6 +(-3)*4))>(8) axx(b=(Cc+(drsce)))

3: COMPONENTS 47

When terms of an expression are of different type, the processor
‘coerces’ values to a consistent type. Coercion may cause a short integer
to become long ({ ‘promotion’) or a long to become short ('demotion
according to the context of the expression. If you wish to override
coercion you may include a cast to specify the precise promotion or
demotion required.

[g & HLCHIC)\ towerro ‘HeneR's VIEE VERSA

ﬁ‘he processor connol directly obey the statement d = 2, where d is of
type double, because 2 is of ‘lower type than d; you cannot store an
int in a location declared double. In obeying d = 2 the processor first
takes a copy of 2 and promotes the copy to double s= as though you
had written 2.4 instead of 2. The promoted value is then assigned to d.

Lﬁ'he converse, i = 2.8, where i is of type int, also involves conversion
before assignment is possible. But there can be trouble when a 'higher’
value is demoted to a ‘lower’. With i = 2.1, for example, the .1 would be
lost and you would probably receive a warning. Some processors would
collapse on meeting i = 76dd0.

CAST, OVERRIDES COERCION

When assignment involves different types, the program coerces values to
the type of the receiving object. The same effect can be achieved by a
cast. For example, ‘d = (double) i’causes a copy of the content of i to

be promoted to type double and assigned to d. The expression i = (int) d

causes the converse by demotion.

PARAMETERS A FORM OF ASSIGNMENT

llnvoking a function with parameters is o form of assignment; parameters
of different type are coerced in the manner just described.

I}or example, in AbsVal(-3) (where the parameter has been declared
of type double) the -3 would be coerced to type double as though you
had written AbsVal(-3.8). Or you could avoid coercion by writing

AbsVal ((double) -3). Coercion of parameters works because the processor
can see from the prototype declaration what types of arguments the
function expecls.

LITERAYCONSTANRTS! USE SUFFIXES, NOT CASTS

Eiteral constants not of type int or double would be suffixed to specify
type. L (long or long double), F (floal), U (unsigned) are defined on
age 33 . Thus 2L represents the value 2 in a form suitable for storage
as a long int, whereas 2.@L represents the same value, but in a form
suitable for storage as a long double. Do not use casts with literal
constants.

48 ILLUSTRATING C

JACTIONYOOPERATORS

[,ln general, any infix operator can cause type promotion if given
operands of different type: 3.141593/4 is a simple example involving the
division operator. In such a case the processor promotes the operand of
"lower' type { in this case 4 which is int) to the 'higher’ type ((in this
case thal of 3.441593 which is double).

ﬁ\he rules obeyed by the processor for maintaining the principie of
promotion to ‘higher’ type are as follows:

[?or each operand; if it is:

* unsigned short int promote its value fo signed int

* unsigned char promote its value to nt with zero left fill

* signed char promote its value to int with sign extended

e char promote its value to nt (form depends on implementation)

ﬁhen ask if the type of either operand is one of the following:

long double? ——~ Y
N double ? —_ Y
N float ? N Y
N unsigned long int? ————— Y
long int? 2 Y
N unsigned int? ~ Y
must be int
A
Droduce result of type int Dromote the value of the other

operand to the same type, then
produce a result of this same type.

3: COMPONENTS 49

<
CORTROL

I3}his chapter describes the control statements of C and
their use. These stalements control the sequence of
execution within a function. Without them, execution starts at
the first statement after the heading of the funclion and
proceeds sequentially to the last.

Gontrol statements already introduced are: if, do, for,
break, return.

Gonirol statements are classified in this chapter as follows:

¢ Tested loops while, do

¢ Counted loops for

* Escape break, continue, return
s Selection if, swilch

Jump goto

m m@ LOOP UNTIL A CONDITION IS MET
while AND do

ical value, 7 body of
B =

while (‘expression) statement

true false
(expression)

statement body

I]F, on entry to the while loop, expression reduces to zero { or null])
then statement is not executed at all. The test for continuation is at the
top.

é\n infinite loop may be)

constructed by writing a non-zero while (1)
constant as the expression {

@ permanently ¢rue)). Escape from

an infinite loop using ‘break.

infinite loop

do statement while (expression) ;

bodly / numerical value,
of loop Ypically inleger or
pointer

true

(expression)
false

“E'he statement is executed at least once, the test for continuation being
at the bottom.

"Eested loops are useful when you do not know in advance how many
times { if any) a piece of program is to be executed. It may be
executed again and again until some goal is achieved = such as the
difference between two quantities becoming very small. Whatever he goal,
it must be expressed as a logical value, lrue or false.

Yf'he ‘while’ loop is needed more often than 'do’, but an example in which
'do’ is appropriate is given on Page 23.

52 ILLUSTRATING C

m m PREDETERMINED NUMBER OF Tl MES

test: omission increment: after body
\ implies | = lrue x /‘ executing tvody of toop

for (expresszonl, expression, ; expression;;) statement

expression; s awdinitializer (optional)

4 A l‘—LEhe initializer, expression;, is

lrue false executed at least once, and once
only, as you can see from the
flow chart.

expressionz

statement

he statement forming the body
the loop is typically a
compound statement.

expressions

Aake an infinite loop by omitting the test, thereby implying constantly frue.

@se the comma operator to extend any or all expressions. For example:
for (a=t, b=t; x>y; i++, j++)

GETTING OUT OF A LOOP BY break AND continue
RETURNING FROM A FUNCTION BY return

‘break’ takes you out of the present loop altogether; ‘continue’ takes you
to the end ol'y the body of the loop, hence to the next execution of the
body <= if the control mechanism so requires. ¢ You can escape from a
complete nest of loops using the 'goto label' statement bul use of 'goto’,
except for error recovery, is frowned upon.

L \f/hile (expression) do ; or (expr;expr; expr)

‘ break; l M -m
[continuei~"]

m*

]

e [omit eﬁxpresszon if function is
defined (o retu 74
return ‘expression™; R

E'or all serious programs, declare
‘main()" as type int, and include a
return ;' The zero signifies normal
termination to the computer
environment,

value of expression is
returned (o the imocation
as though by assignment

4: CONTROL 53

ST OF A REIEEL e oo o

Consider the diagam on the right: 3 Xy
The shaded area is given by Ajj 37
where: 2
Aij = 5 (XiYj - XjYi) s
=+(2x3-25x1) =175 .
4 Po 12 5 @

<<} The same formula may be used for
X350 Yj computing the area on the left. But this
area turns out to be rmegative:
At = 2 (XiY§ - XjYi)
=2(3x25~-5x4)=-625

1
!
E
i
'
|
5

i 2 3 4

l;l:[xhe formula may be applied to sequential
sides of a polygon, and the triangular areas
summed to give the area shown here 5

<=l @ut if the polygon is closed, as shown on the left,

K44 the sum of the areas will be the area enclosed.

"Ehe bounded surface must be kept to the lef2 of
each arrow: the sides of the figure should not cross
----------- “x13 each other as in a figure of eight.

[Here is a program by which to input coordinates of boundary points
and compute the area enclosed:

arbitrary lmit
/ on size
int n, j; /

double Area = 8.9, x[32], y[32];
printf ("\n\nNumber of vertices? : ");
scanf ("%i", &n);

gor (j=@; j<n; ++j)

/* Area of a polygon */
#include <stdio.h>
int main (void)

printf ("Coords of point %i ? : ", j+1);
scanf (" %f %f ", & x[j1, & Y[)

For (j=@; j<n; ++j)
Arep += 0.5 % (xl j1xyT(1+3)%n T~ < (1+§)%nTxyliD;

printf ("\nArea is %.21F", Area); 3
return d; [Number of vertices? : 7
} Coords of point 1 2 : 0 O
jH Coords of point 2 2 : 8 6
12 Coords of point 3 ? 8 15
ﬁhe expression 3 Coords of point 4 2 : 3 15
(1+J‘)%n gives 4 Coords of point 5 2 : 7 12
values as shown 5 Coords of point 6 ? 7 8
by the litte tableW g Coords of point 7 ? 0 8
Y | | _2rea is 53.00

54 ILLUSTRATING C

SELECTIONRSTATEMERTZIIF,

if (expression) statement, “else statement,

this ftawment e;\'ecuted
when ‘expression’ sigmifies
lrue

this statement, if present,
executed when expression
signifies false

numerical (typically integer or
‘pointer lype). Non-zero signifies
true, zero sigmifies false

false true

—
statement! I statement?

true

‘ statement!

gee discussion on nesting and other features of if..else on pp 12 & 13.

expression expression

:;ncﬁ}zzc;s <OsFtdisg%p>es */ ﬁhe example illustrates nested if's;
#include <math:h> rot alwayls ffwe best way to express
int main (void) program logic.

double Pi = 3.141593; [input letter RT or C [
double s, Area, q, b, ¢, d;
char Letter;
int Ok = 1;
printf ("\nR, T, C 7\n");
scanf ("%c", & Letter);
if (Letter == 'R")
printf ("b & d please\n”);
scanf ("%f %f ", &b, &d);
Area = b * d;

s=(atbic) 7

J5(5-a)(: se-bz)(5-c)

Larea=‘1ta’9—Iﬁ I kzrea:bd

else

if (Letter == 'T") {
printf ("a, b & c please\n”);
scanf ("%f %f %f", &a, &b, &c);
s=(a+b+c)/2;
Area = sgrt (s*(s-a)*(s~b)*(s-c)) ;

error| | output area']

b

}
elseiF (Lefter == 'C') R ;E’

printf ("d please\n”); AN
scanf ("%f ", &d); T\/\a %ﬂ
Area = Pi x d x d / 4,
b—c—l

else I rd » 1

Ok = @, R, T, C 2 c %ﬂ
if (Ok) R
printf ("Area is %6.2f", Area); b & d please

3.5 2

else
Area is 7.00

printff ("Try again");
return @;

L3

4: CONTROL

55

TABLE-CONTROLLED LOGIC,
AVOIDING CLUMSINESS OF iF... else

[Programmers spend a lot of time writing input routines. Few are asked
to input and decode Roman numbers like MCMXCII, but this presents no
particular difficulty if you use a symbol-state toble. This approach is tidier
than logic based on if and else.

ﬂssume Roman numerals to be composed of the following elements,
never more than one from each conseculive list:

D=500 L=50 V=5

M=idgo C=1¢0 DC=6¢¢ =10 LX=6¢2 I=1 Vi=
MM=2000 CC=200 DCC=700 XX=20 LXX=78 1I=2 VIl=7
MMM=3gdp | CCC=3gd DCCC=8p@ | XXX=3¢ LXXX=8¢ | III=3 VIII=8
elc. CD=400 CM=9¢¢9 XL=4¢ XC=9¢ IV=4 IX=

ﬂn fact the Romans felt less constrained. 1III was common. Some
monuments have inscriptions of numbers starting with more than twenty Cs.

'ﬁhe logic of the program is contained in the following symbol-state table:

SYMBOL
M D C L X Vv 1 error
1000: 00 | 500: 01 (100: 03 |56:47 |[18:d6 | 5:12 | 1:11
100:02 |56:07 | 10:d6 5:12 1:11
100: 04 |50: 07 |10: D6 5:12 1:1t
80@: @5 |300:05 |18d: 04 |50:07 [16:d6 | 5:12 | {: 11
106:05 |50:07 |10:26 5:12 1211
= #5 5¢:07 |18:d6 5:12 f: 11
3 g6 80:10 |3d:1¢ | 16:09 5:12 1:11
Y 16:08 | 5:12 | 1:1
@8 10 : @9 5:12 1:11
49 19: 18 5:12 1: 11
19 5:12 | 1:11
11 8:15 3:15 | 1:14
12 1:13
13 1: 14
14 1:15
15

ﬁake the Roman number CIX as an example. Begin with a value of
zero. You are in state 88 ({ where the arrow is). Look down from
symbol C and find 188:83 which says 'Add 188 to the value and change
state to 83 So add 18 to zero and move the arrow to 83. Now look
down from symbol I and find 1:11. So add 1 to the value { 188 + 1t =
181) and move the arrow to state 1. Finally, look down from symbol X
and find 8:15. So add 8 to the value { 14t + 8 = 199]) and move the
arrow to state 15, a row of empty cels.

"I—jhere are no more Roman digits, so CIX decodes as 149. Experiment with
MCMXCII and you should get 1992. Experiment with MDDI and you should
encounter an empty cell which means an error of formation.

56 ILLUSTRATING C

ﬁ"he program to implement this method of decoding is short and simple
because the logic mthe difficult partss is embodied in the table.

q!:r'wo pieces of information are packed into each element of the table.
To unravel, divide by 1#@ and use the quotient as the conitribution to the
final value and the remainder to give the next state. Thus 5d2d1 gives a
contribution of 58801 / 106 = 508 ((integer division) and a new state of
50001 % 108 = 1 { remainder when 50001 is divided by 184). The array
has to be declared as ‘long’ on installations that offer only 16 bits for ‘an
int.

/* Roman Numerals */

#include <stdio.h >

char Symbol [1 ={ M, D, 'C, 1, X, 'V, T L
I{ong Table [16] [8] =

{ 1dedee, so00d1, 10003, 5007, 1dde, 512, i, g 1,
{ 2, ¢, 10002, 5007, 1¢de, Si2, i, ¢ |
{ @, @, 10004, 5007, 1¢d6, 512, i, ¢ |}
{ s8odes, 30005, 10004, 5007, 1006, 512, i,) .
{ 2, 2, 18005, 5007, 18de, 512, i, @ :
{ 2, 2, 9, 5007, 1806, 512, i, g
{ 2, e, 8418, 318, 1849, 512, if, ¢ 1,
{ 2, 2, o, @, 1008, 512, i, ¢ 3
{ 2, 2, 8, o, 1809, 512, i,] .
{ o, 2, a2, @, 1919, 512, 1, 2 3
{ 2, 2, 9, @, @, 512, i, /B
{ 2, @, @, @, 815, 315, 114, 2 2
{ 2, 2, g, @&, @, 8, 13, ¢ .
{ 2, a, g 4 0 O, A4, o 1}
{ 2, 2, 6, @, @, 0, 115, /N
{ 2, 2, e, o, o8, &, ¢) }

b

int main (void)

long Entry =1, Number = 4;
int Column, Row = @;

char Ch; s_d stops looping if Enlry picks
printf ("\nEnter a number\n"); up zero (faise)

?/hile ((Ch = getchar()) != \n' && Eniry)

for (Column=g; Column<7 && Ch!=Symbol[Column]; ++Column)

Entry = Table [Row] [Columnl; 4"'

Number += Entry / 108; accumulate Number
Row = Eniry % 128,

} i e
if (Entry) " '
. BV .)
olse pl"lnl'F ("=%i in Arabics”, Number) ; Enter a number
printf ("\nError"); 2802 in Arabics
printf ("\nEnd of run"); End of run
return @;
}
e e W R R -t e

4: CONTROL 57

W SELECTION STATEMENT

switch (expression) statement

f‘
integral value (coerced if necessary to int or
unsigned int) s compared with the value of
each case expression in the block. Control
Jumps lo the statement following the malching
value. If there is no malch, control jumps (o
the statement following default:

typically a { block }
containing case labels and
a single default: label

staterbent

t/n’s statement is next to be
executed if value of the
case expression malches
value of the swilch
expression

< Aexecuted if no malch. (Undefined
behaviour if there is neither
match nor defaull)
break break statement typically terminates each case

printf ("How may legs did it have?");
scanf ("%i", & Legs);
switch (Legs)

case expression

Wm
one default

per switch

ay involve constants only:
evaluated at compile time.
Unigue value essenlial afler
every case in the same block

default : statement

(l
(

case 8: printf ("A spider, perhaps?"); break;
case 4: printf ("Probably a mouse™); break;
¢ 4 multz;ole
case expressiorn:
} v
P CTTT)
improved using "switch' in place of 'if‘as shown below:
scanf ("%If %If", & b, & d);

case 2: printf ("A double-glazing sales person”); break;
case 6: printf ("Definitely a bug™); break;
ﬁhe switch statement is useful wherever the logic demands selection of
stitch (Letter) {
=CDELD
case 'R: case r: {
Area = b * d
break; terminates
} every case

8
2

case 3: case 5: case t: printf (" That's odd!"); break;
4
6

default: printf ("Could be dangerous™);

one case from a group of several The Areas program could be
printf ("b & d please\n");
case ‘T case 't: {

__ J

58 ILLUSTRATING C

uF you omit ‘break’ after the statements belonging to one particular case,
control simply falls through to the next as illustrated by the following
program which displays all twelve verses of a tedious Christmas carol

/¥ 12 days of Christmas */
int main(void)

lnt J, J’ e ot L fr ! L LU nt
char Ord[1={ "', t, 'n, 'd, ', 'd, 't, 'h" };

for (i=1; i<= 123 i++)
' j=1<4?2*(1 1)
printf ("\n\nOn the et m

printf (%1%c%c ", Ord[J] Ord[j+]);
printf ("day of Christmas my true love sent to me,");
if (i==1) printf ("\nA ");

switch (i)
case 12: printf (’ \nTwelve drummers drummmg, ")
case ff: printf (' \n ‘leven pipers piping,")3
case 19: printf ("\nTen maids a-miking,");
case 9: printf ("\nNine lords a-leapmg,'),
case 8: prth ("\nEight ladies dancing, ")
case 7: prinf ("\nSeven swans a-swimming,");
case 6: printf ("\nSix geese a-laying,");
case 5: prinif ("\nFive GO-OLD rings,");
case 4: printf (' \nFour calling birds,");
case 3: prth (" \nThree French hens,");
case 2: printf ("\nTwo-00 turtle doves,");
printf (' \nAnd a ")

) case f{: printf ("part ri-i-idge in a pear treeee.");

3
¢ return @;

mested switch statements are useful for mplemenhng the logic contained
in symbol-state tables. The outer switch is given a case for each state
@ row) of the table. The logic in each of these cases comprises an
inner switch having a case for each symbol { column]) of the table.

m RECOVERING FROM CHAOS

ﬁ\n error condition may be drastic enough to warrant a jump out of the

mess.
a label marking a
/ statement in the same
function

goto name

malching
*‘name : statement

mames of labels do not clash with names of other entities.

4: CONTROL 59

LOTS OF LOOPS: THIS PROGRAM IS FOR THE
m READER WHO HAS A LITTLE MATHEMATICS

Afhe power cables & and b
look as if they are running

uncomfortably close to one

another. What is the closest

distance between them?

'ﬁhis would be an awkward
problem without vector algebra:
here are enough of the
principles to solve it.

4\ vector ¥ is written as:
vV = \/ar +V1j~ + Vzk
where vg, vy, v2 are its
projections in the directions depicted. The length { modulus) of ¥ is:

Vi = Af vo* + V2 + V)
Divide v by its own length and you have a wnit long vector in the same

direction as v: - - > >
v Y Y 6) | =P%

fhe scalar (or dot) product, .V, is given by ;
wgvg + wyvi + wavy, This expression represents the !

[
1
product of the length of one vector and the projected —p — !
q

length of the other upon it. Another way to look at it is:

Iwl Ivl cos8
—_ -~ - ¢
ql}he vector (or cross)) product, VxW is T 7K . -
given by this determinant. It is a ;ector LY viova :f\/"w -
having a direction normal both to v and to W | wg w1 w2 w

/
L@'hal's all we need of vector algebra for this problem. In the skelch
above, @ and B can be expressed:

d = (9-4)T+ (16-8)7 + (17-18)K = 57 +87 + 7K
B = (1g-6)T + (11-3)7 + (15-5)k = 47+ 87 + 18¥

'ﬁhheir cross product, a x b, is a vector normal to a and b:

- .
- ryx > - a result of
axB =|5 8 7 |=24T- 227+ 8F ST g7 I
4 8 10 implies I lies

paratlel to 5

[lts tength is A/ (24)* + (-22)* + (8)° = 3353

;O a_unit vector, T, connecting any point on q to any point on Tis
a x B) + 3353
p.727 - B.665 + 8.24%K

Ifoke a vector, T, connecting any point on & to any point on B. Here is
one; it connects the tip of & to the tip of b

@ = (18-9)T + (11-167)7 + (157K = 1T - 557 - 2K

() ILLUSTRATING C

@roject this onto the unit vector to give the shortest distance belween
the cables:

d =

ﬂf the cables run parallel, special aclion is needed as shown in the 'else’

(Dx(8.72) + (-5)x(-2.66) + (-2)x(8.24) = 3.52 approximately

clause in the program.

!

/* Power cables; are they too close? */

#include <stdio.h>
#include <math.h> «

int main { void)

int Js k=1, m=2;

char Cable[] = {'A', 'B'};

double Coord[12], al3], b[3l, c[3], u[sl;

double Clearance=8.6, Proj=¢.8, asq=0.8, csq=0.8, usq=0.0;

e e A<iDe A
for (J & J<iz; J++) allernating

if (1(G%e))
printf ("\nCable %c\n", Coble[k=t-k]);

if (1(3%3)) .
printf ("End %i: x,y,z coords: ", m=3-m);

scanf ("%LF", & Coord [j1); \
i ? al[ernatz’ng
gor (§=05 j<3; ++j) 42 b 2.

aljl = Coord [3 + j]l - Coord [jl;

b[j] = Coord [9 + jl - Coord [6 + jl;

cljl = Coord [9 + j] - Coord [3 + jl;
u[g] = a[t] = bl2] - b[t] * al2];

ult] = af2] = blg] - a[g] * bl2];
ul2] = alg] * bl1] - bla]l x alt]
for (j=@; j<3; ++j)

usq += uljl * uljl;

if (usq > 0.0) <o nonc-apjz;?/zel

for (j=d; j<3; ++j)
csq += cljl * uljl;
csq /= sqrt (usq);

/o], [1], ...

Clearance = (csq < #.8) ? -csq: csq;
} parallel . o
else cables Cable A
{ End 1: x,y,2z coords: 4 8 10

End 2: x,y,z coords: 9 16 17

for (j=8; j<3; ++j) coble B
{ End 1: x,y,z coords: 6 3 5
asq += a[j] * a[jl;
csq += c[j] * c[j];
Proj += aljl * c[jl;

Clearance between A & B is

}

csq -= Proj x Proj / asq;
Clearance = (csq > 8) ? sqri(csq) : a4,

printf ("\nClearance between A & B is %.21lf\n", Clearance);
return 4; —

End 2: x,y,z coords: 10 11 15
3.52

4: CONTROL

ol

@m AN INGENIOUS ALGORITHM

?he sorting method called Quicksort was devised by Prof. C. A. R. Hoare.
The version described here is a bit different from the original but serves
to explain the essential principles of the method.

ﬁ—jake some letters to sort:

G B LI C N M H
i 4 ~ 1

get an arrow at either end of the list and prepare to move j towards i.
If j indicates a 'bigger’ letter than i does, move j another step towards i.

G B L I C } M H
i g J Dt
%ow j indicates a smaller letter than i does. So swop the two lelters
indicated, and swop the arrows i and j as well:

¢ B L 1 G N M H
J ‘{}-——» % 1
Gontinue moving j towards i (f which now means stepping rightwards

instead of leftwards). If j indicates a smaller letter than i does, move j
another step towards i:

c B LI GNMH
Stagind I ¥
ow j indicates a bigger letter than i does. So swop letters, arrows,
direction and condition exaclly as before:

C B 61 L N M H
i A

ﬂnd so on, swopping as necessary, until j reaches i:

C B G I L N MH
i 43

ﬂt which stage it is true to say that every letter to the left of iis at
least as small as the letter indicated: every letter to the right of i is at
least as big. In other words the letter indicated has found its resting
place. The letters to the left of i have not, however, been sorted, nor
have those to the right of i. But having 'sorted’ one letter, and split the
group into two, it remains only to sort each sub-group, starting out in
each case in the manner described in detail above.

C B 6 I L N MH
\ J @ -
secondly) (Airst

sort sort’
these f{ one item

62 JLLUSTRATING C

4\ tidy way to sort is to point to the entities { such as personnel
records) to be sorted, then rearrange the pointers. C language has
special facilities for handling pointers but these must wait untii Chapter 1g;
here we use integers lo introduce the concept.

g

Type some letters & press Return @1 E»[@]E IRIR B3]l G
GBLICNMH 1 |1 =01l s [4 9 S
E -y —

BCGHILMN Rl {2~ L DRI o\ A0 L

[3] | 34— I | [B31] 74 tpf) T

@se the program as shown above. L] |4 71l C | Lt *i/, e
Try 'ut tensio sic vis. %2 -%Ejg% k:]]—-é— g ':‘
A 74>l n | (7 Al H

7* QSORT: Quicksort; home-made pointers *7
#include <stdio.h >
char Letters[12¢]; «
int Pointers[1801; = s dEpicted
void Qsort (int i, int j
otbe/mse return szout
{

int First=i Last=j, Way=t, Temp;
while (i!= j

i{F (Way == Letters[Pointers[i]] > Letters[Pointers[j]])

Temp = Pointers[il; G
Pointers[i] = Pointers[jl; <
Pointers[j]1 = Temp; <
Temp = ~d 2P
i=j; 4; arrows
N Ten')p; Way goes:
! Way = ! Way; 4 4 L P

statement goes:

j += !Way - Way; iminf jejid i=j
J ay ays Tt =it JEj-tyen.

}
Qsort (First, i-1); «
Qsort (i+1, Last); '

int main (void)

int n, k;

printf (\nT pe some letters and press Return\n")

for (n=g; 2, Letters [n] = getchar()) != "\n'; ++n)
Pointers [n] = n; w

Qsort (@, n-1);

for (k=g, k<n; ++k)

printf (" %c", Letters[Pointers[k]1);
return 4;

invoke Qsort

print
letters in
sorted
order,

4: CONTROL 63

EXERCISES

64

me—program ‘Areas of shapes' using the logic of a switch stalement
in place of if...then...else. You should find the result simpler and
lidier than the program on page 55.

Write a function, using a symbol-state table, to read an octal
number from the keyboard, converting it to a decimal integer ({ of
type long)) . Allow a preceding + or - sign. For example, the
program should read -74 and get the result -5d.

Your state toble should have four columns. These are: [@] to deal
with the leading + or -, [1] to deal with any digit from @ to 7, [2]
to deal! with a space character, [3] to deal with any other
character (an error). The value in each cell should comprise a
label (f for use in an associaled ‘switch' statement) and the number
of the next 'state’, or row. The ‘case’ associated with valid digits
should multiply the accumulating result by the number base, 8, then
add the current digit.

Write a test-bed program to read octal numbers from the
keyboard and display their decimal equivalents on the screen.

Extend your octal number program by making it read numbers to
any base from 2 to 32. The digits for base 32 should be:

8123456 783ABCDEFGHIKLMNOPQRSTUV only as far as F for base 16
etc.). Hint: Store these as characters in an array; when
accumulating a number, add the array subscript to the accumulation.

Let the program treat the first number it reads as a number base.
Make it treat subsequent entries as numbers expressed to that base.

l'_l}he Quicksort algorithm ‘sorts’ a single item, then calls itself to
deal with those above and those below. You can apply similar logic
to the bubble sort described on Page 19. Simply ‘bubble’ one
number to the top of the list, then call the bubble function
recursively to deal with the list below.

Write a recursive bubble sort function. To test it, use the program
on Page 63, first replacing the Quicksort function.

ILLUSTRATING C

3

ORCARLZATION

[ﬁ"his chapter describes the organization of a C program
in terms of (lranslation units and files.

ﬂ C program is turned into an executable program by a
processor comprising o preprocessor, o compiler, a linker.

E‘Ehe preprocessor is described in detail; its logical passes,
the use of directives, the composition of a macro, and the
use of macros for textual substitution and conditional
preprocessing.

gtorage class is explained; the use of storage class
specifiers to establish the scope of an object or function,
and whether objects and their contents evaporate or not
when control moves on. The significance of storage class
specifiers in different contexts & outside and inside function
definitions) is carefully explained.

‘Ehe chapter ends with an explanation of name space; the
contexts in which different entities given the same name
would clash.

PROCESSING PREPROCESSOR - COMPIER - LINCER

é\ C program may be all in one file or shared among several The
contents of each file is called a transtation umit and comprises a set of
directives, declarations and function definitions.

#define PI 3.4 #include <math.h>
#include <mathh > int MyFun (float);
inti=4d, j; int YrFun (double);
i{nt MyFun (float f) extern int i;

declarations int main (void)

rogram of

statements L{/__,M___ thl’po g’ anstation
int YrFun (double d) declarations "Z’,ﬁj’ MA;’;'/Z/[L?
{ statements

declarations

statements }

i

MYFILEL MYFILE2

ﬂlkhough some modern processors prepare a C program for execution
in a sin?le pass, the logical process of preparation is best described in
terms of multiple passes made by three distinct parts of the processor;

* preprocessor
¢ compiler
s linker

['l}he C preprocessor resembles a word processor; it simplifies and
rationalizes spacing, removes comments, copies nominated files into the
program, substitutes pieces of lext. At the end of this slage, translation
units contain nothing but C language.

ﬁ'he compiler translates C language into code the computer can obey
directly. For each ‘text file' of C language the compiler generates a
corresponding ‘object file' of executable code. Cross references between
functions and between files are left open at this stage.

Lﬁhe linker deals with cross references. It copies the executable code of
invoked library routines into the program, links all invocations to the
functions invoked, cross refers local and global variables. The linkage of
gariables depends on their 'storage class', a subject described in detail
elow.

Afhe final result is an 'executable File.

66 ILLUSTRATING C

PREPROCESSOR SIX LOGICAL 'PASSES’

[ﬁhe preprocessor works with fokens. Ltoken keyword > if
These are the indivisible atoms of a C name » A_4
program. All forms of token except constant > dL
punctuator have been introduced in string » "abc"
other contexts; punciuator is defined operator p+=
below. punctuator | w1
punctuator []
- ())

{}

"o

IV AN/ NN
U e i > %%

"l—jhe C processor does the following things, effeclively in the order listed
below:

» It replaces each trigraph with code for the single character it represents.
Thus ??< is everywhere replaced by a left brace. ({ Trigraphs enable
users of equipment based on a seven-bit character code to implement
ANSI C.)

e Wherever \ is followed by a new -) -
line the preprocessor ryem0ves ﬁ‘c;nids} the [';‘> Mind therapist
both the \ and the new-line P
character, thereby 'splicing’ successive lines. The need for \ in this context
is explained Ilater.

* It rearranges white space such that each token is minimally separated
from its neighbours. It replaces each comment by a single space.

» It obeys each directive in turn. A directive begins with # as the Ffirst
non-blank character on a new line. The directives ({ all defined below))
are concerned with textual substitution by smacro. Macros are described
in subsequent pages.

* It replaces escape sequences in character constants and quoted sirings
with equivalent single “codes. For example, \n { as seen in \n' or in
printf ?"\nFinish")), gets replaced with the code for new-line generation.
Escape sequences are summarized on Page 197.

» It concatenates adjacent sirings, removing any space between them and
removing redundant quotation marks:

"Meth" "inks" " " "P" "rates" [;‘> "Methinks Pirates"”

5: ORGANIZATI ON 67

SIAPLEJMACROS) i et

4\ name in association with a useful value, or useful piece of program,
is called a macro.

ﬂn this program (which reads the #define PI 3.14

radius of a circle from the keyboard #define XXX return d;

and displays its area on screen D Pl is int main (void)

a constant used in much the same way

as an initialized variable. Before the float r;

compiler ever sees PI, however, the scanf ("%f", &r);
preprocessor meets #define PI 3.4 and printf ("%f", Plxrxr);
substitutes 3.4 for each occurrence of XXX

Plsz except in the following circumstances:

* not if part of a longer token such as PIPE
s not inside quoted strings such as "Ratio PI"
e not in comments ({ all of which have been removed at this stage).

[W\uch the same holds for ‘#define XXX return @; except that tAree
tokens ({ return and @ and ;)) are substituted for each single occurrence
of XXX. In general, the text for subslitution may be of any length; it
terminates at the end of the line. So what if the cursor reaches the
edge of the screen before you have finished typing the text for
substitution? Press \ followed immediately by Return. The cursor jumps to
the next line and you continue typing, but the preprocessor ‘splices’ what
you type to the previous line as illustrated earlier.

ﬁ\s explained above, #define Pl 3.4 causes 3.4 to be substituted for
each occurrence of PI throughout the file sz except for the three
circumstances noted. Here is a fourth exception; substitution ceases when
the preprocessor meets #undef PI. From that point onwards no further
substitutions are made for PL.

MACROSRWITH ARCUMENTS

M our macro may have arguments.) 7 (x):
These are names in parentheses #define ABSGD ((x)<82-(3): ()

following the macro’'s name and the opening parenthesis.

ﬂfier the definition of ABS(X) the preprocessor might meet a term in an
expression such as ABS(a) for which it would substitute: ((a)<d?-(a):(a)).
This expression returns the absolute (ie positive) value of the number

held in variable a.

Why all the parentheses? Wouldn't (x<@) ? -x : x sufficez No. Try
with ABS(3-7) which would become (3-7) < 4 ? -3-7 : 3-7 and relurn
-18 instead of 4. Put parentheses around the text and around every
argument within it

Vatch out for side effects! ABS (i++) would expand into
(i++) < @ 2 <(i++) : (i++)) causing i to be incremented &ice on
each execution. (i++ is equivalent to i =1 + 1)

68 ILLUSTRATING C

IRESTEDYMACROS! RE-SCANS FOR UNMATCHED NAMES

&&acros may invoke each other:

#define ABS (X) ((X)<p2-(X):(X))
#define NEAR_EQL((A),(B)) (ABS((A)-(B))>(TOL) 2 2 : 1);
#define TOL d.001

ﬁhe NEAR_EQL macro returns 1 { ‘rue D if its arguments have nearly
equal values, otherwise ¢ { false). The criterion for 'mearly’ is set by
the value associated with TOL. For the setting shown, NEAR_EQL (1.2345,
1.2349) would return 1 {true).

ﬂacros that invoke one another may be arranged in any order; the
preprocessor re-scans to satisfy unmatched names (f notice that ABS
precedes NEAR_EQL but TOL follows). However, if one macro involves
others, all participant macros must be defined ahead of any context
wanting to use it. For example, if NEAR_EQL is to be used in main() then
ABS, (Tg)L ond NEAR_EQL must all be defined ahead of the definition of
main().

STRINCIARCUMERTS cperators: # yring-izer”
paster

llF # is placed in front of an argument inside the substitution text, the
preprocessor tokes the argument literally, enclosing it in quotes. In this
example, if the preprocessor
subsequently met PLURAL(Cat) #define PLURAL(P) printf (#P"s");
it would expand it to

prian ("Caf" "S");

ﬂdjacent slrings are always concatenated, and conltiguous 7~ removed,
so the effect of PLURAL (Cat) would be printf ("Cals");

Ifhe \ and " in the actual argument are replaced by \\ and \"
respectively, and so should be treated literally. PLURAL (Cat\nip) is
replaced by printf ("Cat\nip") without an accident over the \n. But be
careful! My system goes berserk if it meets leading or frailing \ or
unbalanced " Q\Cai, Cal\, C:qt

E S

'ﬁhe preprocessor's 'operator’,
##, concalenates arguments. If #define OYEZ(A, B) printf ("A##B");
the preprocessor subsequently
met OYEZ (Aster, ix) it
would substitute 'printf ("Asterix");' But here we are in dangerous
territory;, see Kernighan & Rilchie and the manuals for your particular
system ' or experiment boldly).

5: ORGANIZATION 69

MEADIRQFILES st
mere is a home-made header file. | #define PL 3.14 -
Name it MYHEAD.H int Print (char c, int i);

int Post (float, double);

y ou may start a program as #define ABS(X) ((X)<@ 2 ~(X) : (X))
below. Its first line then gets int Pick (void);

replaced by the contents of the T d stdioh. Similarly, it

= - standard header file named stdioh. Similarly, its
iﬁﬂﬁ:ﬁﬁi Wﬁé‘i’gaﬁ second line gefs replaced by the contents of the
int main (void) | header file named MYHEADA

ﬂn gereral, the #include line tells the preprocessor
to replace that line with the entire contents of the file nominated. If the
name is in pointed brackets it means the file may be found in the usual
directory for standard header files; if the name is in quotes i means
the header file is in the same directory as the program being processed
or in some other nominated directory.

‘ﬁhhe organization of files and directories, and the limitations of allowable
syntax in_names of files, depends on your implementation. See local
manuals for the precise implications of <name> and "name’.

ﬂ header file is typically an ordinary text file that contains a selection
of the following in any order:

definitions of constants ({ #define PI 3.4 D

definitions of macros (#define ABS(x) ((x)<82-(x):(x)))
function prototypes § int Pick(void);

#include lines nominating similar files { #include "YRHEADH")

8tandard header files, such as stdioh and mathh, are available at every C
installation. When your program invokes a standard function (for example
printf ("H");) you have to know which standard header file contains its
prototype. In the case of printf () # is stdioh. To make printf () available,
place #include <stdioh> somewhere ahead of the function in which printf ("Hi")
occurs. The usual place is ahead of all functions defined in the file.

FURCTIONJPROTOTY PES

Elome—made header files (f such as MYHEADH) are useful for keeping a
program tidy as it ?rows. Defining PI once only is better than defining
separately in each file. More importantly, an ANS! C processor will compile an
invocation ({ such as k=Pick()) only if it knows what type of value { int,
float, double, efz.)) the function should return, and what type each argument
should take. The processor knows these facts i it has already met your
definition of Pick J)) and compiled it. But what if the processor met k=Pick()
before having seen and compiled the definition? The answer is that you
should alread}/ have shown the processor a profotype of Pick(): a prototype
contains all information necessary for compiling the invocation k=Pick ().

'ﬁhe lidiest way to show prototypes is to make a header file for them

and include that header file (f #include "MYHEADH")). Then you need not
worry whether the processor meets an invocation before having compiled
the Ffunction invoked.

70 ILLUSTRATING C

CORDITIONALYPREPROCESSING
27 ou can maoke the preprocessor deal [—#“: expressz‘on

with some sequences of lines in your

input file and ignore others according to seouence of lines~einone or,
the conditions encountered during 7 more
processing 4z such as including a file ¥ellf expression lnes

only if it is not akeady included.

”l_fhe diagram shows the required
arrangement of directives, expressions
and lines to achieve conditional
preprocessing.

#else

sequence of lines

ﬁ"he composition of expression is . precisely
restricted to simple constants; don't #endif one #endif

include sizeof or a cast or an
enumerated constant,

completion j=

l’l_jhe preprocessor will deal with no more than one sequence of lines,
and thal's the first sequence encountered whose associated expression
evaluates as non-zero (tue)). #elf means 'else if. If all the #f and
#elif expressions evaluate as zero (faise)) the preprocessor deals with the
sequence following #else 5 but in the absence of an #else sequence the
preprocessor does nothing. In every case the preprocessor ends by
jumping to the line after the obligatory #endif.

|
ol) ' Ao
:gef(gnief,‘,?ef 15:5)93“ (tdefined e) ﬂn expression may involve the
#define e .2718 set bolh if special operator exclusive to the
) either unset preprocessor. It has the form:

#endif

S

, defined (name) or
#if !defined MYTA receives defined name
#define MYTAG null value) _
o and takes the value 1L {ie unity
Put contents of MYHEAD.H tere; ~N expressed as a long int) if true;

they will be processed only once oL if false. True signifies that the
dif processor has already met the
Fend definition of name in the Fern

define name ~ text

#if !defined YRTAG
#include "YRHEAD.H"
#define YRTAG
#endif

lﬁhhe preprocessor coerces all its
Boolean values to long int (1L, oL).

ﬂnsi C offers two direclives, #ifdef and #ifndef, which you may use in
place of #f in macros such as those illustrated above:

#ifdef name is short for #if defined name
#ifndef name is short for #if !defined name

'ﬁ'here are no corresponding short culs to use with #elff.

5: ORGANIZATION 4t

SYATAX@ESURMARYY PREPROCESSOR

'Ehe following diagram summarizes the syntax of a preprocessor
directive. Each directive must be on a line of its own ((possibly extended
by \) preceding the program it is to modify.

preface |#define name replacement » #define PI 3.4
#define name (,Za”ﬁ) replacement » #define FAHR(cels) \

(oo gpaeyy ((32) + (9)*(cels) /(5))

#undef name of something > #undef FAHR
currently define

#include " fle » #include "MYFILHED"

file name as
allowed by

#include < file > > #include < stdioh >

#ine constant = file ® > #lne 22 MYFILE
Wt of el i
#if expression preface > #if !defined MyTag
#define MyTag
g)
#elif expression preface » #elif !defined HerTag
Y— #define HerTag
#ifdef name preface » #ifdef YourTag
#undef YourTag
#ifndef name@ > #ifndef MyTag

#define MyTag

#endif » #endif

where

ot

(replacement)

XY string-izer’
a parameter name preceded by # is expanded to
a quoted string - the parameter being replaced
by the actual argument

72 TILLUSTRATING C

STORACERCLASS

THE BEHAVIOUR OF OBJECTS
W DIFFERENT CONTEXTS

'ﬁhe simple declarations illustrated earlier declare the type of a variable,
and optionally supply an initial value. Such definitions may be preceded

inti= 6 j;
float f;

S

[quatifier 3| const Mw
volatile

specifier)|auto
register

static
extern

by a qualifier or storage class
specifier or both:

I const floal pi = 3.416;

é\ny declaration qualified by const
should be initialized <= because the
processor refuses to permit a
subsequent assignment to the ob ject,
either direclly or indirectly; const
means it is constant.

ifhe volatile qualifier has to do with ‘oplimizing compilers’; its precise
behaviour depends on the installation, so consult local manuals about its

purpose and possible usefulness.

%toroge class specifiers say whether an
object should be remembered or allowed
to evaporate when contro! leaves the
current funclion, whether a global ob ject
is global to one file or all files, whether a
function is accessible from all files or just

one, and so on.

auto int 1 =6, j;

register int k = 3, 1;

static float a, b, ¢, d;

extern int p, q;

?he significance of each storage class specifier depends on the context
of the declaration. This subject is covered in detail in following pages.

Here is a summary, much simplified:

store the varia

QEd § @

Aeans the object evaporales when control leaves the
current block. Objects declared inside blocks are auto by
default, so auto declarations are seldom used

&\eans auto, Elus a hint to the processor that it may
le in a fast register { at the cost of being
refused access to it via an address D

utside all functions: 'static' means the object or function
can be accessed within the current file only

lln a block; 'static’ means the object and its contents are to
be preserved when control leaves the current block

I1—,[,‘ens the processor to look for a full definiton elsewhere
outside the current block or current file 5= and extend its

scope to the current block or file.

5: ORGANIZATION

73

O3 PEGLLYIEIS RELEVANT SPECIFIERS : static & extern
1,

@utside’ means outside all function definitions.

@bjects declared outside function definitions are maintained throughout
the program's run. They are said to be 'global’ Global objects provide a
useful medium of communication between funclions.

'ﬁhhe 'scope’ of an object is the region of program in which statements
may refer to that object or change the contents of that object. This
assumes the object is not hidden: 'visbility' is explained later.

file

not in the Afhe scope of an object defined without a
scope of | specifier runs from the point of declaration
to the end of the same file.
- Ale
scope of i P AT R |

scope of i

]
[l
[
[
]
1

i}he scope of such an object may be
extended lo other files, or another region
of the same file, by extern declaration. Each
extra scope runs from the point of extern
declaration to the end of that file. "

extern int i;

extra scope of i

%

[i_fhe scope of an object specified as static
not in the runs from the point of declaration to the
end of the same file.

e In an oulside declaration 'static’ means
private to the current file.

e An ‘extern i’ in the same file would refer
to the same i.

e An ‘extern i'in another file would not be
associated with this static declaration.

, file-1

ﬂn outside declaration without an initializer int 1]
is a lentative defimition. There may be any | i
number of tentative definitions throughout
the program provided their types do not file-2
e If the linker finds a unique definition of

the item i treals all tentative definitions efintion

as redundant declarations file-3

int i

» If the linker finds no unique definition it

treats all tentative definitions as a single

definition initialized to zero { or zeros’)).

74 ILLUSTRATING C

A\Ithough an object may be ‘in scope’
it may nevertheless be hidden by the
scope of a local declaration inside a
block. Global 1 becomes invisible' in
the scope of local i.

un a deeper nested block you can
hide the current scope of local i with
an even more local is=and so on to
any depth. (f In this example we use
‘extern’ to make global i hide local i in
the same block.

not in scope of Func(')

Ao)
int i = 33 local i
{ /—' hides global {
float i = ¢.8;
X = i3 L4 X picks up
{ local {
extern int i;
kK =15 itk picks up
} global i
y =1
} N4y picks up
local |

gemicolon denotes a protolype

extern int Func (void):

declaration. The prototype declaration
declares that statements between here and
the end of the file may invoke Func(),

"‘ extern implied
' by, default

whose definition is elsewhere.

lln a prototype declaration the ‘extern’ is

scope of Func(') implied by defaut. In the example here,
int Func(y void); would be enough.
4\ block instead of a semicolon not in the

denotes a full dgefinition of Func(),
its scope running from the closing
brace to the end of the file. It is
unnecessary to write a prototype
following a definition.

/MW'M\

not in the
scope of Func()

static int Func (void)

/—W"M

block
W

}
o of Func()

scope

(the scope cannot be
extended to otrer files)

R ——

5: ORGANIZATION

scope of Func()

int Func (void)

Lﬁ-’—\w’w‘—‘
}

m‘)"—ﬁ-’vw

scope

(the scope can be
extended to other files

NGyexern)

ql}he scope of a function may be
kept private to the file in which it is
defined by declaring the definition
static. This feature is useful for
‘encapsulating’ information, together with
corresponding access functions, where
no other functions can see them.
Encapsulation is a vital principle of
OOP (ob ject-oriented programming).

75

BLOCK@DICUARATIONS RELEVANT SPECIFIERS ;
auto, register, stalic, extern

ﬂn auto ob ject, whether declared
auto explicitly or by default,
evaporates together with its contents
when control leaves the current block.

{ auto int i3 ((
{inti;
T\ auto by default
{ register i % ﬂ register variable behaves as an auto
. variable except that (i) you hint that storage
in a fast register would be appropriate, and (i) whether the processor
takes the hint or not, ANSL C forbids taking a register variable's address.

1 {inti=2» J"k;j l]niiializqﬁon of auto objects, or register variables, is
'dynamic’, looking and behaving like assignment.

L{ static int i; j @bjects declared stalic are maintained throughout
the programs run; they dont evaporate.

'ﬁhe initializer of a static object is s Ly,
evaluated at compile time; therefore it { static int i=2xsizeof (int);

may involve only constants and sizeof.

u extern int i; g ﬂn extern declaration in a block makes the linker

- look first at outside definitions in the current file.
If the lnker finds the outside declaration 'int i=6;" it tokes this to be the
i referred to by extern. The same would apply if the linker found a
static definition like 'static int 1 = 63’

ﬂf the linker finds no outside definition of i in the current file, it assumes
a unique definition exists elsewhere < in another file belonging to the
program. { 'int i=6" would be a valid definition of 1, but ‘static int i’ in
another file would be ignored because that particular i is exclusive to its
own file.)

@ecause extern says that the object or funclion is defined outside the current
block (whether in the same file or another)) it follows that an ob ject
declared ‘extern int i’ will not evaporate when conirol leaves the current block.

ﬁ'his is a protolype declaration. It says that
{ int Func(void); staternents in the same block may invoke

Func(), whose definition is outside { in the
\' same or another file). The linker looks
first in the current file. If it finds an
outside definition § beginningint Func (void) {’ or ‘static int Func(void){"))
it takes this to be the Func?) referred to by extern. If the linker finds no
such definition of Func() in the current file it assumes the definition is to
be found in another file (disregarding any declared static })

{ extern int Func(void);

27 ou cannot initialize an object declared extern int i = 6 ;7 .%
extern ammhere. You cannot declare a { externinti=17;>
function static if the prototype declaration static int Func (void);
is in a block. 2%»

76 ILLUSTRATING C

PARAMETERIDICUARATIONS THE ONLY ALLOWABLE

SPECIFIER 1S register
int Func(int i) { Cb@}j @bject i is private to { block }.

When Func() is subsequently invoked
from elsewhere ({ say as x=Func(2x3);) object i gets initialized to 6,

and the statements of Alock are obeyed. When control leaves the function,
object i and its contents evaporale. ?

aut
@arameters are inlrinsically awfo ob jects: int Func (stati§

int i)
don't specify auto, static or extern. extern

int Func(regis'er int i) { ﬁhe pr‘OceSSOl' may *ake the hint
and store variable 1 in a fast

register rather than a memory location. Whether it does so or not, ANSI
C forbids taking the address of a register variable using &ior by indirect
means.

int Func (int i, int j, int k) 3 @” a call such as:

s = Func(x*p, y*xq, z*);
you may not assume the order of evaluation of xxp, yxq, zxr. You may
assume all are evaluated before entry to Func().

4\ parameter of a function may be int Func (Float MyFun())
a function. For full understanding you

need to know about pointers { next

chapter) but here is an example: mﬁ/ﬂ)

#include <stdio.h > r={ function as parameter of a function
#include <math.h > M

?ouble Lookup (double LibFun (), double Argument)

return LibFun (Argument) ;
l 4.000000 0.9998965

int main (void)

printf ("\n%f %f", Lookup (sqrt, 16), Lookup (log, 2.718) ;

4\ parameter of a function may be
int Func (float MyArray [1) { an array. For full understanding you
need to know about pointers { next

chapter) but here is an example of
a function that swops array elements:

zoid Switch (int A [], int i, int j)

mz /' exchange elements
f 3 & 6 of array BT

int TGTP ? A [i] : as follows:
A i = A [J 1 it .
ALl Temn s Switch (B, 3, 6);

5: ORGANIZATION 77

m INTERACTION, CLASH
& HIDING OF NAMES

"l}he nome of a macro in a #define L#define P34
directive gets substituted for identical
tokens & lo the end of the file or
corresponding #undef. The only
tokens immune to replacement are
those in comments and quoted strings.

4\ keyword (such as float) can be
replaced by the text of a macro. =

Otherwise keywords may be used int goto

only as keywords. —C
int Sam = @; &nong outside declarations, or at the
float Sam[e]:on same level of nesting in any one block,
int Sam (void); you may not give a variable the same

nome as an array. Furthermore, names
must be unique among variables,

int Sim; d,\ff arrays, functions, enumeration constants,
float Siml[4]1 = {1,8,0,0}; |and entities yet to be introduced (f viz.
enum Tag{ Red, Green, 36,1}1 defined types, structures, unions). At

any one level all these share the same
A name space.

@ut you may use the same name at a | int Hid = 3;
different level of a block, thereby int MyFun (void)
Hiding the entity at the outer level {

ﬂn example of hidden names on Page
75 shows how you can unhide a name
at outer level using extern.

ﬁags are names used to identify
struct Tagt{int i, float f}; different enumerations, structures and
enum Tag2 {Red, Yello,Green}; | unions. Tags share name space and so
struct Taga{ char c, struct Tagt };| should be mutually distinct. But you may
hide one tag with another at different
level in the manner already illustrated
for variables.

these names
mutually

here is no interaction between names
of tags and names of other entities.

lﬁhhe members of any one structure or struct OneStruct { inti, float f };
union must be uniquely named, but there struct TwoStruct {inti, floatg};
is no interaction between identically named ° ok

members of different structures or unions.

4\ goto statement specifies a name to

if (Chaos) goto Labi; match that of a label within the same

 function. In any one function all labels
must be unique. There is no interaction
between names of labels and names of
Labt: printf ("Bad data"); any other entities in the same function.

78 ILLUSTRATING C

3
POIRTERSWARRAYSHSTRIRCS

El—jhis is probably the most important chapter in the book;
the art of C is handling pointers. Pointers are closely
associated with arrays, and arrays with strings.

?he chapter begins by explaining the concept of a pointer
and defines two operators, * and &, with which to declare
and manipulate pointers.

[Because C works on the principle of ‘call by value' you
cannot return values from functions by altering the values
stored in their parameters. But you can use pointers as
parameters and make functions alter the contents of the
objects they point to. This concept may appear tricky at
first, but glorious when you can handle it confidently. The
chapter spends some time on this concept.

When you add 2 to a pointer into an array, the pointer
then points to the element two further alon?, regardless of
the length of element. This is a property of pointer
arithmetic, the subject next described in this chapter.

&\ost pointers point to objects, but you can make them
point to functions as well. The chapter shows the
correspondence belween pointers to arrays ond pointers to
functions. You may care to skip this topic on first reading;
likewise the next which analyses the structure of complex
aeclarations. Complex declarations are easy o understand
once you have frelt the need to set up a dala structure
in which pointers point to other pointers.

ﬁo manipulate sirings you need only simple pointers. The
second half of this chapter explains strings and their use.
Skrings are simply characler arrays designed to hold words
and sentences. C programmers follow certain conventions in
the structure of sirings. These conventions are described.

ll—jhhe idea behind pointers was introduced in the Pointers etters
context of sorting, Page 63. The following statement [61] 14 ¢l G
causes the letters to be printed in order: [4 111 R
[21] ¢ 2] | L
for (k=@; k < 8; ++k) B 74 \A33 [T
printf ("\n%c", Letters[Pointers[k] 1); 43 Rirs

Is . 5

@ut this is too clumsy for C which has special [6% Q?:; [6% r{:
variables and operators for handling pointers. If 1715 71TH

gou find the concepts confusing, persevere! They
ecome beautifully clear when the penny drops.

r JOPERATOR

f p names a pointer variable, *p denotes the object currently pointed to
y P

P| &7 *xp | 1234

'ﬁherminology: When a job is advertised, the one who appoints is called
the appointer. The successful applicant is called the appointee. On the same
linguistic principle, let the object indicated by the pointer be called the
pointee. ¥p denotes the pointee of p.

ﬁihe term xp (the pointee of p) may be used like the name of a
variable :

X = x p; means assign the pointee of p
(ie. 1254) o the variable x tus Y=7 © | 1.234
~ . means assigning 2.345 to the pointee of p [Ss x
*p = 2.345; (overwriting what p formerly pointed to) =" P Q3

" BOPERATOR

@ehind the scenes, pointer and pointee are linked by aadress.

2.345

84 ILLUSTRATING C

r!}he address of an object is denoted by the objects name, preceded
by ampersand, to say 'lte address of ..." or 'the value of pointers to...

The adidress OF x 1o X
Qaaaress X 15

Doint to x by assigning &x ¢ you need not know if's 1824) to q thus:

q = &X3 i . X
—~ q | (Ie2s @ 2.345

[;low you can access the content of x via the pointer variable as *q.

qjhere is no further need to depict absolute addresses. Here is the
picture that says it alk

@’7@2&}7@?\
n wrile *
DECLARINEYPOIRTERS Tt 3)

=i is OF ‘
float x5 y; (e float x| o8 y| 22

float *p, * q;
‘\'1 the pointee of p is p E/ﬁ:at q E/f;at
of type float

Lﬁhhe first declaration establishes x and y as variables of type float in
the usual way. The second declares 'pointer variables named p and q, of
which the pointees are of type floal. In other words p and q are
intended for pointing to variables of type float.

?o declare a ‘pointer variableé you tell the processor wtat type of object
you intend to point to.

pvigl| & char —»
char xpv[e]; pvlt]| &4—— crar —=
pvl2] | @4+—— char —
ﬁ"he above[d?clares an a&rmy of six pvls]l | ¢4—— ctar —
elements, pvld] to pvls] (all
pointers), their pointees being of pvi4l| & char
type char. pvl5]| @ char ——
P> Qualifiers apply to the nearest
int *x const” coplr = & x; rightwards entity; coplr is a constant
@ initialized) pointer with an integer
const int x pircon; pointee ; the pointee of plrcon is a
constant integer.

6: POINTERS, ARRAYS, STRINGS 81

PARAMETERS Y72 gt i3

4\ common requirement in programming is the exchange of values held
in a pair of variables or array elements.

N LA . ' {
mere is a block of in-line’ code to . s
exchange the values held in a pair of 1nt= 'l;_e.mp =
variables, i and j. j = T’emp;
[flow about a function for swopping values? ! in-line code

'ﬁhhis one is no good. Parameters in C are
void Swap (chari,char j)\ called by value. The function manipulates

{ copies only.

int Temp = 1i;
i=3; B zr auppose your progrom had 2 stored in A,

j = Temp; 3 stored in B. And suppose you invoked
this function as:
ESwap (A B);

r!}he processor would enter the function, assigning a copy of the
contents of A into i, a copy of the contents of B into j It would then
swop the contents of i and j, then return, leaving the contents of A and
B undisturbed. No good! The trick is to employ pointers as parameters
and swop their pointees.

}

ﬁhe function on the right may be

invoked as: ;!Old Swop (int * 4, int x j)

type of Temp

int T = * {3
i Swop (& A, & B); ‘:i e:'[i i 15 N lo match that
= T ;
ﬁhhe processor enters the funclion } *J emp

assigning the address of A to iwhich
makes i point to A) and the address
of B toj (which makesj point to B)
The pointees of i and j are then
exchanged.

‘Ehe above function may be invoked with addresses of array elements
as arguments { eg. Swop (&plil, &p[jl)) or you may write a
swopping function that has three parameters, the first nominating the array
and the other two the subscripts. This function (which exchanges elements
of an array of pointers to char)) might be invoked as:

b Exch (p, 2, 4
r

void Exch (char *v[], int m, int n)
? f Te to ich
char " Temp = v[m]; type;/)mt 21;7/:/[/77/]”0
viml = vinl;
vlnl = Temp;

82 ILLUSTRATING C

PROTOTYPES, POINTERS,

POINTERS AS PARAMETERS
[ﬂere is the sorting funclion from Page 63 re-written with (i) prototypes
to allow functions to be assembled in any order, (i) an array of poin-
ters { a pointer vector D instead of making do with integers, (i) a func-
tion for exchanging the contents of array elements, (iv) a Ffunction for
comparing entities. This arrangement keeps the sorting algorithm separate
from the details of comparing and swopping. By writing replacement
Comp () and Exch() functions you may use Cgsort @ unchanged except
for the type declaration }) to sort objects of any type.

#include < stdio.h > ; pv Letters
void Qsort(char *[], int, int); <
void Exch(char *[], int, int); 4?5
int Comp (char, char); i
char *pv[1ga], Letters[iga]; 01 [eF—[C
int main(void) [1] e A
1| e4—| E
int i, n, ¢; Bl D
printf ("\nType some letters & press Return\n"); wlead—p
for {(n=¢; c = getchar ()) !'= \n'; ++n)
Letters [n] = ¢ stops reading
pv [n] = & Letters [n]; C/;‘;Z,,o,” Eﬁ i
Qsort(pv, 2, n-1); [2] E
for (i=@; i<n; ++i) 131 D
printf (" %c ", xpv[il); [4] B
t .
return g, = ABCDE

void Qsort(char * p[l, int i, int j)
if (i< j)

int First=i, Last=3j, Way=1, Temp;
while (i != j)

i{F (Way == Comp (* plil, *pl[31))

] append function Exch ()
Exch (p, i, j)3 shown at the foot of the
Temp = i,i= j, j = Temp; 4) opposite page
j += (!Way - Way); for swop

Qsort (p, First, i-1);
Qsort (p, i+t, Last);

Comp () would be more complicated if it

int Comp (char a, char b)
compared words rather than letlers

return a>b;

e e o S W e st st

6: POINTERS, ARRAYS, STRINGS 83

AND A FRESH
LOOK AT ARRAYS

ﬂroys were inlroduced earlier as named patterns of subscripted
elements, the elements behaving like variables. Behind the scenes, however,
subscripts of arrays are handled as pointers. Here is a fresh way to
depict arrays:

float al]l = { 123, 2.34, 345, 456 };
int b[1 = { 128, 11, 12, 13 };

‘M
— A
lol| 1.23 JAY, array is lreated as a named pointer
2.34 constant' pointing to the initial array
f21 | 3.45 element.
31| 4.5
Lal | 5.7 [§t Follows that instead of writing a[d]
you may write xa (the pointee of a).
o) (¢
11 [\ore than that! Instead of al3] you
121 12 may write x(a+3) (the 3rd element
(41 [13 beyond the pointee of a) .
“(b+3) Similarly *(b+3) for b[3]

7
printf ("\n%.2f", a[3]); 4.56
printf ("\n%.2f", *(a + 3)) 4.56
printf ("\n%i", b[3]); 13 ‘
printf ("\n%i", *(b + 3)) 13

®n a typical installation an element of a[l ({ type float)) would be twice
as long as an element of b[] type int). To locate a[3] or b[3] the
processor compensates for length. In one case the '3 signifies three limes
the length of a floal, in the other it signifies three times the length of an
int.

4fthe same applies to *(a+3) and *(b+3); the '3 signifies the third
element, whatever the types of a and b.

When you work with array subscripts, or with pointers, the processor
takes care of types and their lengths; &alt] - &al@] yields 1 whatever
the type of a.

printf (" \n%i", sizeof (float));
printf ("\n%u_ %u”, &altl], aale]);
printf ("\n%i", aalt], &ald]);

84 ILLUSTRATING C

A corresponding example using pointers in place of array subscripts
would involve the terms &*a and &x(a+1). Bul the &% says 'the add-
ress of the pointee of ... which cancels itselff out. So &*a is the same
thing as a; &x(a+1)is the same thing as a+t It follows that ax(a+1)-&x*a
is the same thing as 1, being independent of the length of type a.

2? ou may assign the value of a pointer-constant to a pointer-variable of
compatible type:

{
float * p

P =aj
printf ("\n%.2f", *(p+1));

[gut the converse is meaningless: G =p;: ¥ra;
Constants, by definition, are constant: i ;}-5’ P - 7‘%{_’
}7 ou may opply integral offsets to a ZI/_\%B [¢]
pointers, positive or negalive: 235 11
3 is a simple
M L

P
b . ntegral expression 4.56 |[3]
atery QE/5.67[A1

ﬁhe constant @ ((zero)) may be assigned to a pointer-variable to
signify that it is unset. The header file <stdioh> offers a zero constant,
NULL, for indicating unset pointers.

assign: (array al] is

a
depicted on opposile page), 1,23 fl6)

copy 2.34 J[1]

27 ou may subtract { never add)) pointers that point into the same
array. The result is integral and it could be large. Header file <stddef.h>
offers the special type, pridiff_t for declaring variables in which to store
such differences.

Lot ™4 <707 2 [ﬁ r

egative subscripts are allowed . " o et _ .
[;;;rxovided they remain in bounds. printf ("\n%.2f", q[-21);

Bxceplion: The pointer is allowed to point just one increment beyond the
last element. In the following example, p ends up pointing to a
non-existent element, a[5]. At that stage *p would be undefined.

for (p=a; p<a+5; ++p)
printf ("%.2f ", *p g; 1.23 2.34 3.45 4.56

-l
5.67
Dointers into the same array may be compared using >, >=, ==, != ef.

ll?he number of elements in an array may be found from:

sizeof arrayname / sizeof <A
' arragna = (bpe) ‘Parentheses essential for types,
More neatly: not for objects

sizeof arrayname / sizeof arrayname[o]

6: POINTERS, ARRAYS, STRINGS 85

PARLOWR ETRICK(

ﬂnaze your friends. Write down a long
multiplication such as this; then start writing
down the answer, digit by digit, from right to
left, carrying all the working in a cool head.

lﬁ‘he trick is mentally to reverse the bottom
number, mentally shunting it leftwards past the
top number. At each shunt multiply only the
digits lying beneath one another, summing the
products. Write down the last digit of this sum
and carry the rest into the next shunt. The
enlire process is depicted down the right of
the page.

'ﬁo see how it works, consider each number
as a polynomial in i@d. In every shunted
position the products of terms lying one
above the other yield the same power of 14.
Furthermore these terms are the orly terms in
the same power of 18 (but not forgelting the
carry from above)

4x10° + 6x 10* + Tx 0! + 5x10°
9x 10° + 8x1ol 4+ 3x10°

54 x 10° + 56 x10% + {5 x10°

e.g. all the terms in 18

?he program opposite automates the method
of multiplication described above. It can cope
with any reasonable length of multiplication
adjusting the constant OP (eg. #define OP 35
As set opposite, the program can multiply
terms as long as 35 digils, giving a product
as long as 72 digits.

Li_jo use the program type two numbers
separated by an asterisk and terminated by
an equals sign. Then press Return.

4675*389=
1818575

111111311111111111111*200000060000000000000=
2222222222222222222200000000000000000000

Ehe program offers another go. When fed
up with it, hold down Cirl and press C (or
whatever it is you do on your particular
implementation to abort a run)

86

MORE ARRAYS : MORE FUNCTIONS
WITH PONTERS AS PARAMETERS

N 46715

X 389

lale]7]s
2[8]3]

5x9 = 45 __write .,.@

arr

NAE
3[813]

4
5x8 = 40
79 = 63

{07 rte (D)
re

NAE
2[81]3

TLLUSTRATING C

/* Any-length multiplication
#include < stdioh > operand
#define OP 20 e Z

int Read_Op (int *, char); <=<d dgg;etg%e ﬁolfm. o

i{nf main (void)

long int sum;
int a[OP], b[OP], c[OP+OP1;
int i, 3, k, m, n;

\E/hile (1)

length of product
accommodates operators

printf ("\n"); v invoke function w@ointer to
i = Read_Op (a, '*) array al] then with_pointer to
j = Read_Op (b, '="); array b[7
n=1i+ j;

sum = @;

[o] T1] L2] (3]
4167

?or (k=n; k>=08; —k)

for (m=k:; m>@g; --m)

if (m<=1i && (k—m)<=ii)

sum += al m] * bl k-m 15
c [n-k]1=sum % 18; Dick off
sum /= 14; last digit

carry sum

}

¥ (st‘;u[r?—zn] = sum*@?

. ’ /A 0

Whi]e (n+1) oL 2Zer ']
printf ("%i", ¢ [n--1); 4}@7@@#

}

return g; pointer, invoke with
Vf to int f' “ or =

i{nt Read_Op (int *p, char Xit)

int r, Ch;
for (E=¢; (Ch = getchar()))!= Xit; ++r)
if Ch >>"¢ a& Ch <= '9 a9 accept on
plrl =Ch - '¢'; a/i?gitsly

else

- gl ignore non-digit
return --r

.
’

NS return subscript
of last digit

£21 111 1]

'ﬁhe function for reading the operands terminates on the character you

specify as the second parameter. It reads the digits into the array
pointed to b

the final digit; thus if the function reads a seven digit number § ¢
through 6)) the function returns 6.

6: POINTERS, ARRAYS, STRINGS

y the first parameter. The function returns the subscript of

POLRTERS RGP VNCTIONS R 2 873X e

ﬁbhe demonstration program on Page 77 is reproduced below.

#include < stdioh > double” (*libFun) ()
#include < mathh > ¢/

?ouble Lookup (double LibFun (), double Argument)

return LibFun (Argument); J

}
; , [4.000000 0.999896 ?
|{nl main { void)

printf ("\n%f %f", Lookup (sart, 16), Look .
return o; Pl sq), Lookup (log, 2.718));

S WP R

Gfhe program shows that one function (Lookup()) may have another
Function § LibFun()) as a parameter. When you invoke Lookup() you
provide the name of an available function as an argument in place of
the dummy parameter. In essence, you foliow the same pattern as for
numerical parameters.

@ut 'double LibFun()' is actually an allowable shorthand form of :

double (* LibFun) ()
1t A

ﬁhe parentheses around * LibFun are needed because () binds tighter
than *. Without parentheses this parameter would parse as

double * (LibFun ()) which says Function returning pointer to a
double’. With parentheses as shown it reads:

NS TSNS
{ 'LibFun is a pointer to a function that returns a double.')

V ou may find the concept easier from a different point of view:

() signifies’ ‘function
(which has unspecified
arguments) returning . ..

double (¥LibFun }() The full declaration
: This shape signifies a pointee §something pointed to)
This part of a pointee identifies the pointer of the

pointee, in our case LibFun:
‘LibFun is a pointer pointing to ...

double [T €) This shape declares a function that returns a double.
'LibFun is a pointer to a function returning a double.

80 a function name ({ sqrt or log in the program above) is a constant
pointer. The concept of array names is similar; an array name is a
constant pointer to the beginning of that array; see the depictions opposite.

88 ILLUSTRATING C

int f(double d);

f
¢7A/?RAY B (7 s

FUA’CT/O/V$

return

3
3 BOEEE]
argumernt,

mere is a demonstration program to take the concept a step further.
Given a number, the program prints its square rool, log and anti-log.
These are library functions with prototypes in <mathh>.

ﬁ double
he data structure is depicted P 5 treH~ Udbrary 1

here. P names an array of [l sqrt (¢ /lima‘tons

pointers { function names) to [tlllog (" o—|

library functions. 121 exp [

. . — N
#include < stdio.h > contatns prototypes
#include < mathh > Touble sgrt (double) ; etc.

int main (void) declaration
analysed
below

array initialized
with function
pointers (ie.
function names),

double r, v;
int i; 3
double (xP[1)() = { sqrt, log, exp };
printf ('g\nEnter a + val?;e: ")g P

scanf ("%LF", &v);
fFor (i=@; i<3; ++i

r= (*P[i]) (v);
printf ("%.4f", r);

.
]

Enter a + value:
1.8708
1.2528

(sqrt)(v) then
(log)(v) then

(exp)(v)

33.1155

return g;

lﬁ'he complicated declaration may be analysed in the manner shown
opposite :

double (*x P[1) () Mind the precedence! [] binds tighter
than *. Jmplied parentheses are shown

double (* (P[1)) () <<uhere
This nominates an array element

e
o

double [[IITNNNNANIOALY) ¢ > -+ o function that returns a double.

R N N N IV VN
'P is an array of pointers, each of which points to a function
¢ having unspecified parameters)) that returns a double’

6: POINTERS, ARRAYS, STRINGS 89

The pointee of any element P[il is

COMPLEXQDICUARATIONS R/ -7 3%

4\ complex declaration is illustrated on the previous page. Here it is
again, analysed as a ‘parse tree:

double (* P I 1)(C)

double
library ‘d:
functions double

[ﬂere is a data structure involving arrays of pointers to arrays:
p

ol
[11
[21
[3]
(41
51

’i/‘regu,mr
lree

'ﬁhhe demonstration program opposite shows how such a structure may
be set up; first by declaring the arrays, then by linking pointers to
addresses. The structure may be described by analogy with a tree having
a root, branches and leaves.

fe1| @
[11{ o

qjhe program shows how to access a particular leaf from each junction
on the path from the root. Notice how the expressions for access suggest
and reflect the array declarations.

9g ILLUSTRATING C

#include < stdioh >

int main (void) 3 implied by sizes of all arrays must
{ initializer be specified or implied by
nt ulel, vIl={0 &9} wisl; iniiglizer,

u
int (xr[8]) [], (xs[41) [1;
it (* (xale]) [1) [];
it (x (x Cxp)I1)IT)II;
p = &a;
al[g] = &r;
af1] = &s;
r[g] = au;
rl1] = &v;
s[d] = &w;

printf ("\n%i", v [2])s
printf ("\n%i", (xr[1]) [2])3
printf ("\n%i", (* (xale]) [1]) [2] s
printf ("\n%i", (* (*)

return 2;

C*xp) [el)[1]) [2]
B~

change subscripts to
access any other leaf

mere is a 'parse tree’ for the declaration of p:
int (x (= (* p) [I1DX[1)I11;

! /

unadorned
pointer (o..

an array
of pointers
lo...

arrays ; ’

; for a ‘regular lree’ you would

of tp; z‘n.ters specify the size of array at
each level, eg.

int (+(x(xp)[8DleDl1a};

arrays
of int

[ln the expressions for access to the same leaf { which mirror the
declarations of pointer vectors) climb back from leaf to root by
replacing each local array name with the pointee from the previous level
For example, both v and r[1] point to the same place, so replace v with
the pointee of r[1]. Follow this on the diagram apposite:

replace v_with (*rf1]

printf ("\n%i", v)
printf ("\n%i", ()s
printf ("\n%i", (* 217 [11) [21] s
printf ("\n%i", (x (* (xp) [81) [1]1) [21);

6: POINTERS, ARRAYS, STRINGS 91

W THE USUAL FORM OF A CHARACTER ARRAY

mere is an array of characters initialized from a list of character
constants :

char Disco [1={ P, 0, ", "' 2,8 };

T

.] hen working with character arrays
Disco Z [(D;l ??s useful togappend an extra y
L element to mark the end of the
[21 array. Advantages of this approach
[31 are demonstrated ot length later.
(41
[s] What character do we use for the
morker?
Pap
. . are 32
ﬁo appreciate the problem, consider how (o1] 80 apart
characters are represented inside the Disco 1171111
computer. Many implementations represent (21 (1121 ‘Dgeaf”
characters by their ASCII codes. @1 have [3](321 Pace
shown ASCII codes as decimal numbers; (41| 50
the computer would store them as binary %8

numbers.)) , L

‘Ehe answer is to use zero for the marker, not ‘¢’ ({ which has an ASCII
code of 48) but an internal code of zero. Use the escape sequence \#
to represent the internal code of zero.

' 1

char Disco [1={ P, 0, p," ', ", '8, @ };

Disco[—_Zj—\4 array of characters terminated
OIED w1 &l array

[2 by a zero marker is called a string

P
[11111 (1ol @ or string array).
21112 [2]
insicle ’ (31] 32 I3] 5}0 initialize a sitring, C offers the
picture [41] 50 /@ il 2] following short cu;.?

[sT 48 {s1| @
1] g [sJRE‘
char Disco [,] =

A
counted to 7 spaces “are \¢ appended
automatically significant automatically

lﬁihe zero marker is included in the count. The same result would be got

from char Disco[7] = "Pop 24". But char Discol[ée] = "Pop 28" is an

error, a likely result being the loss of the zero marker.

Disco[161="Pop 28" would create a siring with zeros in the extra elements:
[@1 T11 21 [31 (47 Us1 [61 [71 [8] [9]

Disco [P lo[p| [2]d [vw[w[Ww[\s]

92 ILLUSTRATING C

ISTRINCFARRAYS POWTER 1S A CONSTANT ;
STRING IS MALLEABLE
-

char Disco [1 = "Pop 20" ;

L7 111 [27 (3] 4] 5] [6]

Disco l E rﬂf’ lolp 1 J2]o|\g]
inte.
x 27 ou may not assign to a constant:

@ut you may change the contents of elements in the array provided you
do not try to extend it

Disco [4] = 'T';

Disco [1] += ‘A" - ‘a’; 161 [11 [27 I3] [47 [s] e

Disco [2] += ‘N - 'a'; TTolp T Jafe [v]
[Programs which manipulate strings typically declare a set of siring
arrays, each of adequate length. An example is :

Lchar r[st], s[sat], t[st],

g

where the siring currently in each array may grow to a length of 8¢
characters { and its terminating "\@).

[®3 [17127 133 [4] (57 [6] [801]

rfefTT0[P] JszNl?f JI 1
— area of memory

reserved -
Nttt
ISTRINCIPOIRTERS POINTERS VARMBLE ;
- ANY STRING 1S CONSTANT

L‘char xp, *q, *Gig = " TUNE" ; «

P

l i , l % l and g can point only to characters
P R 9 4 =~ jey pozﬁto nowhere at present
- - e~ Gig is initialized to a
Gig m ITJU]N)E l\@] constant string

ﬂthough you may find it possible to alter a siring constant { eg.
Gig[2] = ‘0’ to change " TUNE" to " TONE")) the outcome would be
undefined. O,

@ui you may freely assign pointers ({including pointers to constant stringsD
to pointer variables:

p = Gig; ‘/ {67 r1] [21 [3] [41 5] fe]
Sig = Disco; TI6IF] [2[6 1]
Discol : l

T{U|N|E [\

6: POINTERS, ARRAYS, STRINGS 93

PRINTARCESTRINCS!

4\ call to the printf () Function { defined in <stdioh>) takes the form:
printf (string ~, _expression ,)

ﬁhe string conlains as many descriptors as there are expressions
following. So far we have met %i, %f, %c. There is also %s for the
substitution of a string defined by its pointer: - -

varinw ("%S T0 %5", P, Glg >; | W TUNE TO TOP 20

@I examples of printf have so far shown string as a literal string q in
other words in quotes). But wherever a siring is demanded, you may
provide either a literal string or a pointer to a string. There should be a
zero marker at the end of the string.

printf. (Gig) CAREFUL! 5
'j‘intf (p); if Gig or p contained %, =P TOP 20 TUNE

"printf would look for an exira
argument to match each %

RACCEDYARRAYS NO NEED FOR EVERY ROW

TO BE THE SAME LENGTH

ﬂt is sometimes useful to store a set of constant strings such as names
of days of the week ("Monday”, "Tuesday",...) or error messages
addressed to the user of your program:

i{nt ErrCode (int n)

static char *Mess[] = 4@2@@ to ErrCode)
{

"Bugl" |
"Should be greater than 17,
"Too many sides",
"Unrecognized code

int s = sizeof Mess / sizeof Mess[d] - 1;
n=(n>s|ln<o)?d:n;

printf ("Error No. %1: %s!", n, Mess[n]);
return 2;

— e)

. —~PLkW
o BRG] Bl TG elalEler] e T

= Flolo] el y] FEEEsM

"
O~ PR EERE][RR

94 ILLUSTRATING C

CATERING FOR OPTIONS
WHEN YOU RUN THE PROGRAM

lﬁhe way to set a C program running depends on the implementation.
Typically you type a command nominating the file in which the executable
program is stored, then press Return.

MIMIC

A program may be written that demands (K or will accept as an option D

extra information in the command line:
MIMIC Caps tabs <= e

“l?he manual that explains how to use such a program might define the
allowable command line by a syntax diagram like this:

MIMIC CAPS
e LoesJ

lﬁhe options are automatically handed to function main() provided tat
you give main() two parameters: the first is of type int, the second is
an array of pointers to char. Conventionally these are called argc and
argv[] respectively:

br;nfin (int arge, char * argv [1)

[ﬁihe processor parses the command line into strings, recording their
number (at least one J) in argc, and selting up a pointer vector <z
terminated by NULL <5 as depicted below:

¥ _MIMIC_CAPS § Z MIMIC Caps tabs
argw arge [2] argv{e] argc

[01[e
[1]

[Xlere is a program that lists the arguments corresponding to its
command-line paramelers, excluding the name of the program file:

include < sidio.h >

to lst the full command
line, change --argc to
arge-- and change
*ttargy L0 rargvi+

int main (int argc, char * argv [1)

while (-- argc)
printf ("%s\n", * ++ argv); £

] F’IIMIC Irish? No, I can’t.

Irish?

No,
the pointee of the I
augmented arge can’t.
L\;\-\/\ﬁ/

6: POINTERS, ARRAYS, STRINGS g5

PARAMETERICOUATINLERREY)

l‘_l}he printf () function is defined in Chapter 7 as follows:

)s
lhe ellipsis

int printf (const char *,

Frst Y/

parameter

a, string

Examples of invocations (f each with a d
are:

printf ("\nThere are %i lumps weighing %f grams”, n, w);

will e an int Aoating form

printf ("\nAnswer is %i", count);

27 ou can write funcltions such as this, in

unspecified number of
’ argyments

% says the %f says the second
first argument argument will be in

denoles an

ifferent number of arguments)

paramelers for
the two extra
arguments expectea

\G——%4 0re extra argument
expected

which there is at least one fixed

argument followed by an unspecified number of exitra arguments. The

header file <stdargh> defines a tool kit

for relrieving the exira

arguments. The tools are described below:

#include < stdargh >
L name of
va_list ap; a pointer,

NG a special pointer type

va_start (ap, n) ;

/ name of last Axed

parameter in the
declaration of this,

<

name of the /

argument-
pointer

type-name describing
the type of argument
expected next

next extra
argument

may not ke char,

<

—

[?irst declare a pointer to the
list of extra arguments

. @lace this ahead of your first
use of va_arg()

@lace this below your last use

T of va_arg()

I

[Place any number of these
between va_start() and
va_end(). Each invocation of
va_arg() returns the next
extra argument and treats it as
having the &pe you specify.

F

Unsigned char, or fiodl

96

ILLUSTRATING C

mere is a function to compute the arithmetic mean of ils exira
parameters. It has only one fixed parameter, and that is to convey the
number of extra arguments you supply:

#include < stdargh > =fprotolypes of va_arg() et.
#include < stdioh > ‘

double Mean (int Count, ..)

int n; ;
’ declare a. ter Lo
double Sum=¢ , afa_jisfaﬂ y
va_list ap; 7 ;

“L_—“ymake ap point Lo the first extra
argument (after count)

va_start (ap, Count);
for (n = d; n<Count; ++n)

Sum += va_arg (ap, double); < 40ick up each exira argument in
va_end (ap); turn - treating it as a double
return Sum / Count;

} . "

e Nt e

mere is a lest-bed for the function. It is tested on four, two and one
extra arguments respeclively ;

int main (void) drgurnent for
{ Fixed parameter

printf ("\m\n%f", Mean(4, 1.5, 24, 3.6, 2.8));
printf ("\n%f", Mean(2, 12, 36))
printf ("\n%f", Mean(1, 6.7));
return 4;

B

E}y now you should have spotted a fundamental weakness in the
argument-retrieval scheme: you fave (o lell the function how many extra
arguments o expect, and what the lype of each will be. There is no
equivalent of the ‘argc’ and ‘argv’ parameters of Ffunction main().

e e e e e et

H
2.575000
2.400000

6.700000

ﬁhere are three distinct ways of telling the function how may exira
arguments to expect:

* As in the example above, use one of the fixed parameters as a
counter; or

¢ Let the final exira argument act as o marker. For example, if all argu-
ments should be positive numbers, terminate the argument list with -1 and
walch for this signal when reading them with va_arg(); or

* Use the idea found in printf (), scanf (), et al The last fixed
parameter is a string; each occurrence of % in the string signifies
the expectation of a corresponding extra argument in the list that
follows. Furthermore, the style code (%i, %f, %s efc.) tells what fpe
the expected argument should be. You can handle a range of
distinct types with a switch statement having a different va_arg()
for each case.

6: POINTERS, ARRAYS, STRINGS 97

m‘ 3 A SET OF FUNCTIONS
FOR MANIPULATING STRINGS

@uch of programming is concerned with strings. The ANSI C fbrary

offers about thirty siring-handling functions that cover everything one

would want to do. Here we develop a similar, but smaller, set of

functions which nevertheless covers most of what one needs. Some

resemble functions in the library, others are_different (f particularly the

one for reading sirings from the keyboard)) .

mm A3/):X2i*) int KeyString (char x, int(), int);

S

?his is a function for reading J Janette 3.5
strings typed at the keyboard.

[@7 147 T21 [31 [41 &gl

l KeyString (ps, Spaces, 4); P . _ ’.Bj
. " d ps[e]—[T]alnle [Vo[f U1

Vhich serves to read and PSI_:I‘—"'[3].]15[\0]/ ‘_‘_‘_‘“_{l:]

ignore leading spaces, then to
read up to four characters into the array pointed to by ps, then to
read and ignore any remaining characters in that string { eg. 'tte' in
Janette'))

ﬂ\ example of a call is:

trings typed ot the keyboard may be terminated in the usual wa
whitespace) or by amy otter characters you care to list. Name a function
and list your selection. For example:

int Punctuators (char t)

return (t=="\t') + (t=="") + (t=="\n") + (t=="3");

————

Lﬁhhe above causes termination on tab, space, new line, semicolon. The
function below terminates the item on reading a space or new line only.

(o e " —

i{nt Spaces (char t)

return (t=="") + (t=="\n");

lﬁ‘he third function (below) terminates the item on reading new line
only. In other words it gets the next line of input:

i{nr Lines (char t)
/1
i return (t=="\n"); ~
e e e

'ﬁihe first parameter of KeySiring() points lo the array into which the
string from the keyboard buffer is to go, the second nominates the
termination function, the third specifies the maximum number of characters
to be stored in the receiving array { the 'significant’ characlers

TN e et f

98 ILLUSTRATING C

/* READ NEXT STRING FROM KEYS */

int KeyString (char *p, int TermFunc(char), int length)
{ int ¢; W@

.(;':ho(r l:ns ;fh <1) c=gelc(stdin) is the 5522%;/:;3
! 9 same as c=getchar() end of Fle
return 1; ’ R

s = p + length - 13
while (TermFunc (c=getc(stdin)/l && c !'= EOF)

; elurn ¢ to inpul for next gele() lo
ungetc(c, stdin J; return ¢ to inpul for, next, gelc() fo read
while (! TermFunc (c=getc(stdin)) a& ¢ != EOF)

W Pt o= cy f if end of Fle
*p = \g;
return (¢ == EOF) ? EOF : 4,
| D)

e

ﬁwo features of this Function need clarification:

» ungetc() causes the nominated character to be 'pushed back’ on the
nomi?c;ted stream ({ in this case stdin)) to be picked up by the next
getc ().

o EOF is a constant defined in <stdioh> (f in several processors it
takes the value -1). EOF is what you get if you read when there is
nothing more on the input stream to be read. With every processor
there is a way of sending EOF from the keyboard. With DOS systems
you hold down Cirl and press Z. Consult your particular manual on
what to press.

@elow is a little test bed for demonstraling the KeyString() function. To
try the test bed, run it and type:

WA
A—

Note; This function is useful!
s« TEST BED FOR KeyString */
and press Refurn. #include < stdio.h >

int KeyString (charx, int (x) (char), int);
Afhe screen responds: int Punctuators (char)

int main (void)

.
k]

int i;
char String [8t];
while (1)

i=KeyString (String, Punctuators,5);
printt ("%s\n", String);

if (i==EOF)
break ;
return @
pe other sentences. } ,
| . d KeyString (), and
Finish with EOF. apper Punczmtori e

6: POINTERS, ARRAYS, STRINGS 99

IWHATIKIND JOFXCHARACTER B

"_l__lihe following two Ffunctions work for ASCI1 code in which lelters are
numbered contiguously. EBCDIC code would require some complication.
SRRt aieitt AN

/* NOT FOR EBCDIC: Returns 1 if ¢ is a capital, otherwise @ */
?t IsCap (char ¢)

return ¢ >= ‘A" a& ¢ <= 'Z'

/* NOT FOR EBCDIC: Returns 1 if c is a letter, otherwise ¢ */ T
int Istetter (char ¢)

return IsCap(c) |} (¢ >= 'a’ && ¢ <= '2');

S ——,

ﬁhhe next two functions work for any code. For IsVowel() a static
array is initialized at compile time and scanned on each call

D* ANY CODE: Relurns t if ¢ is a vowel, otherwise ¢ */
int IsVowel (char c)

static char v [1 = "EeAaliOoUu";

har *
C Q. P //-—\ short for *p 1= \¢

wh|le (*p && (xp = c))
++p;

return xp == c; v e Flefe[ATaf1]i[0]ofulul\d]
L3 — te1 [161]

/x ANY CODE: Returns t if ¢ is a digit, otherwise @ */
i{nt IsDigit (char ¢)

) [0 afgl its are
= <= . , N
return ¢ >= ¢ && c 9 contiauous in

all codes

i N e
HOWALORCYISYARSTRINCIR2 N7 7 IV o .

ﬁo compute the length of a siring, take a copy of its pointer. Then
increment the pointer, stopping when its pointee is \@ ({ false I) The
length of siring, excluding the \@ element, is 1 less than the difference
between the augmented and original pointers.

int Stringlen (char * p)

{ COPy p T
char x q = tnal m
whlle (* p ++) [#7 11 121 131 [4]

[a]b]c [N]

= ey

100 ILLUSTRATING C

re}urn P-q

COPYIRCESTRINGS! COPY AlL, COPY A PART,

COPY & CONCATENATE

ﬂF you want q to point to the siring pointed to by p, simply copy
pointers thus: q = p . But sometimes copying pointers will not do; you
have to copy a siring, element by element, to another localion. To do
this, copy the pointee of p to the pointee of g, then increment both q
and p, stopping when the pointee of p is "\@'. -

“Tor 11 21 4
\{/oid StringCopy (char * p, char * g) p
sagd it loops until \ o q [alb e [\d] .
is copied to #g (3] n‘]mj,
= | .

%/oid StrCopy (char * p, char * g)

while (* g = * p)
+ g, ++ p;

@wd here is an even .
more terse version: [;‘> while (% q ++ = x p ++)3

W

i}he next function copies part of a string. You give the position of the
starting character and the number of characters to be copied to the new
location.

\{/oid Middle (char * n, char * p, int Start, int Span)

onditions to
int L = Stringten (p) ; /
if (Start>=¢@ z& Start<L && Span>¢))

if (Start+Span > L) < if Span overiaps end of,

Span = L - Start; < string, lruncate it
*(n+$pan) = '\¢, 5 L] [j] [23 [3]
while (Span --) n [eG—{xTv[z]\]

x(n+Span) = *(p+Start+Span); Start =4
} i

[¢1 111 121 [3] 141 [5] 161 [7) (8]
xn="g; p [e—]Als]c]n[x[v]z[w]\|
} > Span=3 fe

"_lrhe final copying utility copies two strings, locating them end to end as
a new string. A typical call is Concat (N, L, R); the only overlapping
allowed is Concat (L, L, R). Either original string may be emply.

Fvoid Concat (char * new, char x left, char x right)

left [e—>{ a[blc[\0]
g @[[F 59
while (* new ++ = x left ++)
3 LF~step back —
o'~ o (F-EBLE(alel BT

while (* new ++ = * right ++)

*

if (* left)
{

3

6: POINTERS, ARRAYS, STRINGS 101

ONE WITH ANOTHER
COMPARINCESTRIRCS! OR PART OF ANOTHER

YW/ hen comparing strings, is "Twine" equal to "twine"” ? And do we want
to test for equality or for relative ordering ? The function Compare()
offers parameters by which to specify both such requirements.

lﬁho moke the parameters meaningful, create two #pes: enum Mode and
enum Logic, by the following declarations:

I a# A aszs A

enum Mode { Distinct, Equiv };
enum logic { eg, ne, gl ge, & l}

1N | SN
not X grealer) greater
eqguals

A\ call to Compare () might be:

Ok = Compare (p, eq, g, Equiv);

Which sets Ok to 1 if strings p and q are equal on the assumption that
upper and corresponding lower-case letters are equivalent:

Ok = Compare (ps, gt, "Wikins", Equiv) ; ‘—l

ﬁ]he above would set Ok to 1 if the siring pointed to by ps is to be
placed above "Wikins" in a sorted list like a telephone directory.

B¥he function assumes ‘o’ < b’ <
‘c’ etc. and distinguishes strings on
their f'irst non-matching character.
Thus "Jones" is greater than m Yo 7
"Joan's" becauseg'n' > 'a’. Also, k Jloja nl'ls [\
"Jo" is less than "Joan's" because

@' < 'a'. r

p Jloiniels [\¢

@uncluation marks and other characlers are ordered according to their
internal codes. In ASCII, for example, an apostrophe is less than a full
stop, so "X's" precedes "X.s" in a sorted list. One would expect
"Buzz9" to precede "Buzzig" but the criterion is the First non-matching
character; 9 is greater than t so "Buzz1g" precedes "Buzz9" in the
sorted list (not nice)

5}0 handle case distinction or equivalence we call on the function Uc()
shown below:

/x NOT FOR EBCDIC: Returns upper case equivalent of c r*
 if c is a lower case and letter and if Mode is Equiv /x

t{:har Uc (char ¢, (enum Mode } M) "

return (M g3 (c > a")aa (c<="2"))2c+'A -"a:

102 ILLUSTRATING C

rx Compare two slrings for equality (8), non-equality (1), etc. */
rx with Equiv case (@) or Distinct case (1 */

int Compare (char *p, enum Logic L, char *q, enum Mode M)
ST NGRS 2

L %= 6;
while (*p && xq && (Uc(*p,M)==Uc(*q,M)))
P, g++;
s{:witch(L)
case #: return x p == *xq;
case 1: return xp != xq; 4’3
case 2: return Uc(* p, M) > Uc(xq, M);
case 3 return Uc(*p, M) >= Uc(xq, M);
case 4 return Uc(*p, M) < Uc(*xq, M); 429
! case 5: return Uc(* p, M) <= Uc(*q, M); <FJ[B
return @;

}

ﬁhe second comparing function finds the first occurrence of a short
string in a long skring. If a match is found, the function returns a pointer
to the starting character of the matching portion in the long siring.

returns [E—\ pg‘) last position

AF no maich is found the [67 [£112) [31 [4] 151 [6] [73 (87 I9)

function returns a NULL

pointer. NULL is defined in Super lcipjclA[B|AIB]A[B V]

<stdio.h >. q L83 [13 £21 [3] [4]
sub[[e3—>[A[B[A[B[\]

"l—,i‘he mode of comparison (f cases Distinct or cases Equiv) may be
specified as for the Compare() function.

/* Finds first occurrence of subsiring in superstring */
7* Returns pointer to substring in superstring, or NULL */

char * Instr(char *Super, char *Sub, enum Mode M)

char *p, *qs

int i;
= S H
g = qugerStringLen(q) - StringLen(Sub);
n{F (p>=q)
\i_vhile (q<=p)

for (i=@; *(Sub+i && Uc(*(g+i),M) ==
c(*(Sub+i),M); ++i)

if (’! * (Sub+i)) return 93

p ! Hq;

return NULL;

6: POINTERS, ARRAYS, STRINGS 143

h bay:
BACKSLAWC Qs i By ek bty Myt A 4

@ackslang is a secretl language spoken in boarding schools. It is suitably
incomprehensible when heard for the first time but easy to master once
gou know the grammatical rules. There are probably many dialects of
ackslang ({ also called pig Latin)); this one is remembered from school
days. Each English word is folded about its first vowel and ay is
appended ({ ‘ea » eatay, tomato - omatotay). If a word begins with a
vowel, the second vowel becomes the pivot (item - emitay) unless there
is no second vowel, in which case there is no fold { itch > itchay). A
diphthong at the beginning of a word is treated as a single vowel (oi >
oilay not iloay; earwig ¥ igearway not arwigeay).
?\ capital letter at the beginning of a word has to be transformed
Godfather - Odfathergay not odfatherGay). The u ofter g demands
special treatment (Gueen > Eenguay not ween@ay). A trailing punctuation
mark has to remain traiing § Crumbs! 5 Umbscray! not Umbslcray).

@pposile is a header file and main program for encoding a sentence
into Backslang.

When you run the program it wails for you to type a sentence and
press Return. Type:

' This is Backslang! Can you read it? Perhaps not at first. I

'Ehe program encodes and responds with:

Isthay isay Ackslangbay! Ancay ouyay eadray itay? Erhapspay

otnay atay irstfay.

—————t e~ e

pre another sentence and press Return until fed up with it. Stop
after space or new line }) by holding down Cirl and pressing Z (or
whatever you do to send EOF from your keyboard) then press Return.

lEhere are checks this program fails to make. Numbers are not respected
at all: 356 comes out as 35ayé (f can you see why?). Punctuation marks
are catered for only at the end of a word (Backslang! comes out as
Ackslangbay! D; a punctuation mark in front of or inside a word is
treated as if it were a consonant ({ "Think" becomes ink"Thay" and Joan's
becomes Oans'jay). And a sentence can only be as long as the
keyboard buffer.

%everlheless this small program does illustrate string manipulation using a

lbrary’ of simple home-made functions < and it's more fun than the
usual examples in text books, like counting lines and occurrences of words.

104 ILLUSTRATING C

/x Header file, STRINGYH, declaring string Ffacilities */
#include < stdioh >

enum Mode { Distinct, Equiv }

enum Logic { eq, ne, gt, ge, s

void Middle (char x, char x, mt, mkj

char Uc (char, enum Mode)’

int Compare (char *, enum Logic, char *, enum Mode);
void Concat Echar x, char %, char *);

int Stringlen (char *)

char * Instr (char x, char *, enum Mode);

int KeyString (char %, int (x) (char), int);

int Lines (char)

int Spaces (char’) this is a

int Puncluators (char) headler File
void StrCo (char x, char *); containing all the
int IsDigit r char) string utilities
int IsVowel (char’) described.

r”, ”
int IsCap (char); #include 57}?//76)’ H
int IsLetter (char); to make them

gl F
Backslang
7% Enugma encoder, Enghsh >>> Backslang encoder
#include " STRINGY . H

int main {(void)

char pl221, forel[48], aft[48], PuncMk, * Qu;
int Cap, Length, i ;

while (KeyString (p, Punctuators, 15) != EOF)

Length = Stringlen(p);
if (Length <= 2) / append "ay |

Concat (p, p, "ay");
else if Arst letler is capital, mark Cap
true, sel leller lo lower case

if (Cap = IsCap {*p))

+—
Puncl"{li *(+ Len th =13
if (! IsLeHer (PuncMk))

.-Iftt is not a letter,
storien stnry by 1

*(P + - Leng*h) NULL ; A if string contains "gu”
if (Qu = Instr (p, "qu", Equiv)) replace, s
wCQu i) s ‘? q A/ by 4
i = IsVowel (*p) ? 2: <)

for (5 ! IsVowel (*(p+|)) 8% 1 < Length; ++i)

" (Q) mettoﬁrstvavelbeyondl
l u ” ”
*(Qu +1) = _Yreplace "g8" by “qu”

Middle (Fore, P. i Lengfh -i); 4 copy last part and first part and
Middle ((aft, c P, 2, F) concatenate

Concat (p, ore a t

coe B)

if ('IsLetter (Punch
Concat (P &Punch)s
if (Cap &z Is eHer (xp))
xp += A - 'a';

"buci "
A

if the original word
N enced in sometfing otter,
than a lelter, append it

\AF i Tre original word was
rintf ("%s ", p); capitalized, corvert Ist letter

& lo a capital
return 2;

6: POINTERS, ARRAYS, STRINGS 185

EXERCISES

Zl When the price of an article includes value-added tax, book
keepers have to break down the price into net cost and amount of
tax. Write a function having four arguments: inclusive price,
percentage rate of tax, pointer to location for storing net cost,
pointer to location for storing amount of tax. The function should
return @ if successful, otherwise a non-zero value. An example call
might be: n = VAT(2395, 17.5, &Cost, &Tax)

8 Gonvert the sorting program on Page 83 so that it sorts words
rather than single letters. This exercise involves handling strings. To
read the words, use KeySlkring() defined on Page 98. Set up a
two-dimensional array ox characters for storing the words by rows,
each row terminated with 8. To compare words, use Compare()
{ defined on page 143)) with Mode set to Equiv.

3 4&1 exercise with pointers to functions. Recast the areas program
on Page 55 to comprise a main program and three funclions, each
of which returns an area. Function Rectangle() reads two values
from the keyboard, Triangle () reads three, Circle() reads only
one. The main program reads a letter, R, T or C. It then calls the
associated function and displays the value returned. Don't use a
switch statement; set up an array of pointers to functions as shown
on Page 89.

@ Ehe declaration int * x() declares a function returning a pointer
to int. The declaration double (¥(*z)[1)[] declares a pointer to
an array of pointers lo arrays of double. What does the declaration
long int (x(*z[1)[1)() declare?

Tackle it verbally, or draw a parse lree, or depict the data
structure with boxes and arrows. ({ In the second edition of
Kernighan & Ritchie <5 see Bibliography s are functions for
constructing and unraveling complex declarations automatically.)

6 @age 184 lists some deficiencies of the Backslang program. Improve
the program accordingly, making it respect numbers and all usual
puncluation marks.

106 ILLUSTRATING C

/]
INPOTMOVTPV,

ﬁ'his chapter explains how to handle input and output, both
on the standard streams ({ stdin, stdout, stderr) and on
streams connected to files. The chapter explains how to
open such sireams and create files on the disk.

?he chapter begins with the input and output of single
characters using library functions already introduced

@ getc(), ungetc(), putc()) . Related functions are
described (fgetc(), fputc() and getchar(), putchar()).

'ﬁhe mysterious format strings used in scanf() and printf()
are at last fully described.

gtreams are explained, and how to open and close them.
Also how to rewind, remove and rename files. These
techniques are illustrated by an example of a simple utility
for concatenaling files under keyboard control

Lﬁhe use of temporary files is explained.
|}inally, binary files are introduced and random access

explained. These subjects are illustrated by an example of
a rudimentary data base.

ONEJCHARACTER O O ST,

ﬂnpuf and oulput of a single character has already been introduced
informally. The most common library functions are explained on this
double page. Al are defined and summarized in Chapter 14.

CET,

int fgetc (FLE * s) ;
int getc (FILE x s) ;
int getchar (void) ;

macro, based on
fgete ()

< +4 macro eguivalent
lo getc (stdin)

Ch = getchar();

Each of these ‘get’ functions returns the code value of the next
character waiting in the stream buffer, or EOF if the buffer is empty.

& typical stream is stdin. This stream is automatically connected to the
keyboard buffer. You may, however, nominate any input stream that has
been created and connected to a file as described on Page 16. For
example :

FLE * MyStream;
MyStream = fopen ("MYFILE", "r");
i = fgetc (MyStream);

Ehe return value, i, is of type int as shown by the prototypes above.
The following coerces the return value to type char:

char c ;
¢ = fgetc (stdin) ;

@ut this may cause trouble. Suppose your implementation treats type char
as a one-byte signed integer. A variable -128 > +127

of this kind can store any ASCII 7
character (value @ to 127)) but cannot %ﬂ 7
properly handle characters with values 01234567

128 to 255 because these would demand a 1 as bit @. This is the sign bit;
setting it to 1 would moke the variable regative.

Fome C compilers offer a global 'switch’ by which to change the
interpretation of type char to a one-byte wnsigned integer, allowin
correct interpretation of character values in the range ¢ to 255 ({ typical
of a personal computer). But for the sake of portabilty it is wise to
leave this switch alone and to freat characters as type int in all input
operalions,

108 ILLUSTRATING C

@SI C has facilities for handling characters that need more than eight
bits to encode them. They are called 'multi-byte characters’. The Kanji
alphabet illustrates a typical requirement for multi-byte characters. This
book does not deal specifically with them.

PV

function
int fputc (int ¢, FILE * s);

int putc (int ¢, FILE * 5); <<asy 770 based on fpuic ()

int putchar (int ¢); macro eguivalent
pd (i) to putc (c? stdout)

rar TN ~TTNT T
putchar ('A); 4@5 eqc?éa[ent lo (int) 65

ettt

Each of these 'put’ funclions places the character corresponding to code
¢ onto the nominated stream. Each function returns ¢ if successful,
otherwise EOF.

E'I}ypical streams are stdout or stderr. Other streams may be nominated
and connected to files as described on Page 6. For example:

FILE * YrStream;
YrStream = fopen ("YRFLE", "w");

he first parameter is of type int, implying that if you provide a value
of type char, the value will be treated as type it on transmission.

fputc ('¥', YrStream);
(241, YrStream);

fputc
- Ok outsice ASCII char range ‘

int ungetc (int ¢, FLE x 5);
char Ch;
ungetc (Ch, stdin) ;

i}he function puts any character ¢ on the front of the nominated input
stream such that the next fgetc() { or getc()) to nominate the same
stream will pick up character c.

Or whatever
241 represents

ﬁhis function is intended for use in cases where you cannot know if
you have finished reading one item unti you have read the first
character of the next. You can then ‘push back’ this character, making the
keyboard buffer appear as though the character had never been read
from its stream. See the example on Page 99.

[Don't try to 'push’ any more than ore character on the front of a
stream. The function returns EOF if unsuccessful

7: INPUT, OUTPUT 149

Im m int Fprintf (FILE x, const charx, ...);

‘E‘his double page defines fprintf () which sends formatted output to a
nominated stream. The 'specifiers’ needed are common to all library
functions having the letters ‘printf’ in their name: prinitf (), sprintf () et

for each %

EE

space) @ | digit| . |digit L i ,
= *— - l u
+ * * h lo}
x
*_— 2 e|q
g N fl

o S S g |
s 3§ & % |°8
Q’) 33
§ § ¥]] s 18

Ignore if + is also present, otherwise precede a negalive

number with a minus sign, a non-negalive number with a
space.

- Left justfy, then pad rightwards with spaces absence of a

g, minus sign means right justify and pad to the left)
S Precede the number with + or -
* Print values coded e, f, g with at least one decimal place

{ eg. 188) Prefix #x to values coded as slyle x; prefix 8
to values coded as style o.

leading Print a leading zero { but ignore this flag if a minus flag is
also present)

wiath Minimum field width expressed as digits, eg. 12 ({ wider values
are not constrained to this width)

* Signifies that width is specified by an int argument preceding

the argument that provides the value to be printed. The
following program displays one cycle of a sine curve:

114 ILLUSTRATING C

#include < stdioh >
#include < mathh >
int main (void)

int i3

double rad = 3.141593 / 184;

for (i=d; i<=36@; i+=20)
Fprintf (stdout, "\n% xc", (int) (sin(ixrad)*35+48), "+);

return 4;

"\n%*c"

precision
length

i, d

u

o

X

e
~ f
§> g
& XE,G
Q
8

c

s

n

l

Number of places after the decimal point expressed as digits;
eg. 2. In the case of a siring, precision expresses the
moximum number of characters to be printed. The asterisk
works in the same way for precision as it does for wiath.

The type of each numerical argument must be compaltible
with its associated style code, optionally modified by h, L or
L, as defined in the following table. eg. Le signifies a long
double to be printed in scientific formal.

cock (stye) | unmodified | h L L
d, i, n int short int long int -
e, f, g double - - long
double
o, u, x int unsigned unsigned -
short int long int

Decimal integer eg. -123

Decimal integer, unsigned eg. 123

Octal integer, unsigned eg. 777 { 175 decimal b

Hex integer, unsigned eg. ta (26 decimal)

Scientific format eg. -1.23ed82

Decimal number eg. -123.45

In style e or f, whichever is the shorter

These specify the same forms as x, e, g respectively, but
any letters involved are printed in capitals G if code x
produced ff2a, code X would produce FF2A)

Single character

The associated argument points to a siring. Print the entire
string, exlending field width (if necessary) to accommodate.
The associated argument points to an int variable to which
the current count of printed characters is sent:

int m;
fprintf (stdout, "123456%n", &m); -
fprintf (stdout, "=%i", m);

?he sequence of arguments must match precisely the sequence of
specifiers in the string. When the type of an argument fails to match its
associated specifier the result is either crazy or non-existent.

7: INPUT, OUTPUT

char * fgets (char x, int, FILE *s);

int sscanf ?const char x, const char *,...);
Bxamples in this book show input from the keyboard via scanf (). That is
not a practical way to read data. If the item you type on the keyboard
does not match Erecisely what scanf () has been told to expect, scanf ()
evokes mayhem by z:gnorz‘ng the item, So if you really need the extensive
scanning facilities offered ?l scanf () it pays to use them under control

o

of sscanf () { string scan format) as described below. Do not use
scanf () for practical prograrus.

Lﬁio use sscanf () with kelboard dala, first input a line as a siring. The
easiest way to do this is by gets() @ get string).

{ |
char p[88 1 xq
fFflush (stdin) ;

fgets (p, 84, stdin) ;

T 42

» o

f appended
points o a 01 [11 [23 [3] (415421791

when OK, function c/mr cter
returns p,
Lotherwise NULL pled—{ 7] [al2 W3]

E‘uncﬁon fFgets (), when called, reads from the keyboard buffer into the
string pointed to by the nominated pointer @ p in the example shown)
Reading terminates on new line. The new-line character itself is stored with
the string. "\d' is automatically appended.

[lt is up to you to make the string buffer long enough { typically 84).

mow scan the siring using sscanf (). If things go wrong you can scan
again and again.

" & Chr, & Nmbr) ;

Sscanf ()
returns the

malching their
respective specifiers,

Write nothing in the format siring except
spaces and tabs (f which are ignored)
ond specifiers. Other characters in the
format string would be expected to match
corresponding characters of the input
string 52 and Murphy's Law says they
wouldn't.

112 ILLUSTRATING C

skip

widlh
(max)

pointer

length

code (style)

ef,g

U,0,x

(o]

(7]

[specifiery % » dagt |F| |n i
' >~ |N) d
L o
u
X
3 e
& s
A
s § 0§ § |
¥ %] 8

Pan V' Uy W

The characters associated with a 'skip' specifier are read from
the keyboard buffer, interpreted according to the specifier,
then discarded ({ % *i as the first specifier would cause the
first item from the keyboard to be treated as an integer, then
skipped).

You may specify a field width beyond which the next specifier
takes over ({ 456 processed by %2i would be int 45, leaving 6
to be resolved by the next specifier in the string).

The F or N signifies a Far' or Near' pointer to override the
default format. { This is a matter of particular implementations
and is beyond the scope of this book. Not an ANSI feature.))
The input sltring is encoded according to its associated letter,
optionally modified by h, | or L, and coerced to the type of
the receiving variable as tabulated below { eg. hi = short int):

basic length modifier

code 1 upmodified | h L L
d,i,n [int short int long int -
e,f,g |float - double long double
O,u,x |unsigned int | unsigned int | unsigned long | -

Decimal integer eg. -78

Integer: decimal eg. -78; oclal eg. 877; hex eg @xia
Decimal number eg. 8, -12.3, +1.2E-6

Unsigned decimal, octal, hex integer respectively

%6c reads next 6 characters ({ including whitespace) and
stores them as an array from the given address. "\@' is not
appended. %c implies %1c.

%7s reads non-whitespace characters sequentially and stores
them as a string from the given address. The siring is
terminated by \@' on meeting a whitespace character or
achieving the count, whichever happens first. %s implies %bigs
where big is a large number, implementation dependent.

Integer count of successfully read characters prior to meeting
%o

7: INPUT, OUTPUT 113

TO USE WHERE sscanf()

IS UNNECESSARILY CLUMSY
@sing gets () and scanf() is a clumsy way to handle keyboard input if
your need is to read only simple numbers and words. How often do you

need to read numbers in scientific formal? Or in octal or hex? If the
answer is 'Often! use sscanf (). Otherwise read on.

Decide what characters are to behave as terminators. Typically these are
space, tab and new line, but you might wish to add comma, colon,
semicolon. 1t depends on the kind of program you are writing. Specify
zour chosen terminators in a function having the form described on

age 98. Assume the one called Punctuators() for the example opposite.

lln your program, get the next item by a call to GeNext(). It does not
matter what sort of value you expect; the person at the keyboard may
have typed it wrongly anzway; you simply cannot know what you may
get and have to deal with.

mow consult the return value of GetNext. This value tells you what was
found in the keyboard buffer as far as the next terminator:

@: neither number nor name 1: a whole number
2: a decimal number 3: a name

4\ mome’ is here defined as a string of letters { and optionally digits))
that starts with a letter. Underscore is not included; modify IsLetter(g on
Page 1#¢ if you want it to be.

.@k numerical result is stored in a variable of type double.

i= GeilNext (p, & m);

what it found:

address of a
double fo fold
value if
mumerical

address of
where you want

the input string
held

or name
1 = integer

ﬂssuming tab, space, newline &

semicolon as terminators, five calls
to this line would produce results
as follows:

i *p terminated) m

-1234; -1234.0; H2S04 Med$; 2B||!2B

{ -1234 -1234.800000 @ call to GetNext() says:

2 -12348 ~1234.000000 ,)

3 H2SO4 3.000000 Get the next item from the

8 Mess 0.000000 keyboard and show me what kind
@ 2B||12B 2.000000 of ilem i is

114 ILLUSTRATING C

i{nt GetNext (char *p, double *n)

int Status;

double Frac = d; the four possible
char Sign, *r; L
enum { siring, integer, decimal, name };

Status = KeyString (p, Punctuators, 15); ;

i (Stalus '= EOF) R e Garacters afler
Sign = (* == "4 * == = ? X% fNULL;
e

For—(r - Sign ? p+i: p; IsDigif(*r); ++r)

*n = xn x 18 + (xr - '8); ~ ,
AN g 5)
for (+tr , Frac=t; IsDigit (*r) ; ++r

xn +,=.(xr - 'd) /(Frac »= 18);
if (Sign == "-") 'gits afler decimal

(xn) »= -10;
if (1xr) g [whOle string has
Status = Frac ? decimal : integer; been ead
?Ise A if it starts with letter and comprises
lelte digits
if (IsLetter (xp)) Al I AP

while (IslLetter(xp) || IsDigit (xp))

++p s
} Status = !xp ? name : sltring;
}
return Status; FM
@elow is a driving program with

e

- which to test GetNext(). X

#include "STRINGY.H" R
%nt main (void) W Page 105)

char wlsa];
double m;
int i;

printf ("\n"); TN e T
while (1) ﬁqﬁmﬁmze loop; enter EOF to get out)
{ ettt

i = GetNext(w, &m);

if (i==EOF) break;

R e Y e NV e N
spx:ti:h((M; %’ echo lo screen as a slring & new [z'ne)
{

simple driver to
emonsirate
GetNext ()

case 3: printff (" Name "); break;
case g: printf (" String "); break;
case 1: printf (" Integer "); break;
case 2: printf (" Decimal "); break;
default: printf (" Chaos "),

printff (" Value =%Llf\n", m);

} try this with the input
return 2; ine shown opposite

.

7: INPUT, OUTPUT 115

STREAMSQ/LRFILES!

Afhe standard 'streams’ are:

* stdin standard input stream ({ from keyboard)
» stdout standard output stream (to screen)
» stderr standard error stream (to screen)

27 ou may define any number of other streams connected to various
devices (' such as printers and plotters) and to 'files’ on disk. This book
deals only with disk files. The means of attaching other devices depends
on the implementation, but the concept of a ‘stream’ remains independent
of the implementation; it should be possible to direct an input stream from
any input device, an output stream to any output device.

@m FILE* fopen (const char *, const char * ;
FILE* freopen(const char *, const char*, FILE *

4\ stream may be opened and connected to a file using fopen ().

- we

stream = fopen (flename, mode);

freopen (filename, mode, stream);

narme

‘ﬁhis name nominates a stream in the same manner as
stdin nominates a stream. The name must have been
declored as a pointer to FILE, where FILE is a #pe

@ just as int is a type) defined by C. For example:

"_l}he allowable syntax of name depends on the
implementation. In DOS, for example, lower case and
corresponding upper case letters are equivalent and the
Path is punctuated by backslash. Examples are:
'"MYFILEDOC" and "C:\\MYDIR\\MYFLE2.DOC" ({ where \\ is
an escape sequence o represent a single \).

redirect from stream (o flename
eg. freopen ("PRNFLEDOC", "w", stdout)

FILE x MyStream I

27 ou may express filenawme as o pointer to a string. For
example, in a DOS environment:

char *p = "C:\\MYDIR\\MYFILE.DOC" ;

" o"

MyStream = fopen (p, "w") ;

18 (%) ILLUSTRATING C

| mode " r b " [
‘ w + ’ "wb"
a *_ > "wb+"
27 ou moy express mode as a pointer to a slring:
char x g ="w+b ",
MyStream = fopen ("MYFLE", q) ;
mode & significance of mode symbols &»
symbol .
if nominated Ffle exists if Ale doesnt exist
r open file for reading error: return NULL
w open file for writing create file, and open it for
writing
a open file for appending
d writing on the end
b declares file to be 'binary'<# as handled by fread() and
fwrite (), The absence of b implies a formatted text file
+ permits both reading and writing &7 using fseek() and ftelt(),
or using fgetpos() and fsetpos(). Or just by rewind()

.e

Gmm int fclose (FILE *)

When you have finished with a file you should close it. The exit()
function demonstrated overleaf serves to close all open files when
obeyed; in such a case you do not need fclose(). The function returns
@ if successful, otherwise EOF.

i = fclose (stream) ;

m void rewind (FILE x)

When a file has been written, or added to, it must be rewound before
it can be read. This can be achieved by resetting the file pointer, as
explained later, or by rewind().

.e

Irewind (stream) ; ‘

ﬁhe rewind function automatically clears error indicators { see later).

m int remove (const char x*)

27 ou may remove (delete) an existing file, but not while the file is
open. Close it first. The function returns @ if successful, otherwise EOF.

,—; remove ("MYFILEDOC");

~——1

7: INPUT, OUTPUT 117

mm int rename (const char *, const char *)

ﬂwy file, open or closed, may be renamed.

i = rename ("ELDERLY", “SENIOR") ;

ey 4 X~
old name W

Becayse a file name may define a path, rename () may be used to
move a file from one directory to another. The following rudimentary
ulility achieves this in a general way: ~ -

store this file a.
MOVER.C

#include < stdioh >
int main (void)

char old[8d], new[8d];
printf ("Enter existing path\n> "); N
Fgets (old, 88, stdin);
old[strlen (old)-11="\d'";
printf ("Enter new path\n> ");
fgets (new, 88, stdin) ;
new [strien (new) -1]="\g';
if (! rename (old, new))
printf ("Success!\n");
else
printf ("Try again!\n");
return 4;

Mover
Enter existing path
> C:\MINE\LETTER.DOC
Enter new path
>C:\YOURS\LETTER.DOC
Success !

}
L -
ERRDORS int ferror (FLE*); int feof (FILE *); clearerr (FILE x):

Every file stream has two indicators, initially clear (lzero l):

error indicator
* end-of-file indicator

ﬂf something goes wrong during an attempted read or write, the error
indicator for that stream becomes non-zero and stays non-zero until
specifically cleared by clearerr () or rewind(). An altempt to read
beyond the end of a file causes the end-of-file indicator to be set
non-zero, but this indicator clears itself before every attempt at reading.

g? ou can interrogate either indicator, and re-set both to zero, using the
ollowing functions:

CZaEN

i = feof (MyStream) ;

interrogate error

indicator.
interrogate

<r—Vend-of-file indicator

= ferror (MySiream) ;

either function
sels bolh
indicators zero

118 ILLUSTRATING C

@E A UTIITY FOR CONCATENATING NOMINATED FILES
TO ILLUSTRATE fopen(), rewind(), feclose()

ll_jhis program is a rudimentarﬁ utiity. To run it, type CATS, then
nominate the file you want to be the concatenated file, then nominate the
files to be copied into the concatenated file. For the concatenated file
you may nominate a new file § and let the utiity create it) or an
existing file { and let the ulility wipe out its current contents)).

CATS NEWFILE AFILE BFILE CFILE Licormmand

line
ame of lts fle
(lypically a new name)

X
a/y mumber of names of existing fles to
be copied contiguously into the new file

r* MAKE NEW FILE FROM CATENATION OF LISTED FILES */

#include < stdioh > ‘4
#include < stdlib.h >)

int main(int argc, char xargv[])

in DOS,
the compiled version
is stored in CATS.EXE

if Ale doesnt exist
it is created; if file
exists it is rewound
for overwriting

FLE *p, *q;
int 1, ch;
i{F (argc > 1)

i{F (p = fopen (argvit], "w+")) file should exists

it is rewound for

for (i=2; i<argc; ++i) readtng

i{F (q = fopen (argv[il, "r"))

CATS.EXE while ((ch = getc(q)) '= EOF)
NEWFILE putc (ch, p);

AFILE fel 3

SEILE 1 close (q) N close this

read Ale
fprintf (stderr, "\nIgnore: %s not found", argv[il);

else

rewind (p); <t rewind write file

fprintf (stdout, "\n"); Ry [eading
while ((ch = getc (p)) != EOF) copy rewound
putc (ch, stdout); Ale to screen
fclose (p)3
} \ skznaggrd emzr streaéﬂ
m ilable
?se f ava by
Fprintf (stderr, "\nAbort: %s couldn’t be opened", argv[1]);
exit (1)
similar to return(1) but
1 exit () closes open files
else

fprintf (stderr, "\nNo arguments given for %s\n", argv[d]);
exit (2);

return 9

7: INPUT, OUTPUT 119

A

iTEMPORARYQFILES chor s o chors 3

27 ou can create a temporary file which has no Alename; just a name
to identify its stream. The mode of opening is "wb+" &% in other words
gou may write to the temporary file and read from it in ‘binary’ form.
inary form is explained opposite.

void parameter ;]
le
FILE * BriefStream; ave emply

BriefStream = tmpfile () ;

errory
Ehe nameless file is automatically removed when you close its stream:

fclose (BriefStream) ; %

ﬂF you need a temporary name for a file, function tmpnam() will
provide a string guaranteed not to clash with the name of any other file.
You may give tmpnam() a parameter pointing to an adequalely lon
array in which to put the unique siring. The minimal length to allow for
this string is given by the constant L_tmpnam, defined in < stdioh >.

—

#include < stdio.h >
int main {(void)

77

char RumpleStiltskin [L_tmpnam 1;
tmpnam (RumpleStiltskin) ;

printf ("My name is %s\n", Rumplestiltskin);
return @;

ﬂf you omit its argument, tmpnam() relurns a pointer to a static array
created internally.

char * MayFl?' = tmpnam ()
MyStream = fopen (MayFly, "w+b");

fclose (MyStream);

remove (MayFly);

"—l}he name returned by tmpnam() may be associated with a new fFile
using fopen(). When the siream to that file is eventually closed, the file
itself remains in the file directory. If you want to get rid of it, use
remove (). The only files to be removed automalically on closure of the
stream are the nameless files created by tmpfile ().

120 ILLUSTRATING C

size_t Fwrite (const vold *, size_t,size_t,FILE x)
BIIARY size_t fread(void *, size_t, size_t, FILE *)

ﬂl streams so far ilustrated are streams of characters, or text. A text
stream comprises lnes, each line having zero or more characters
terminated by a mew lre character. No matter how the local hardware
treats such a file, the C programmer may use library functions { getc(),
scanf(), printf() etc.) on the assumption that the file is modelled as just
described.

ﬂf you need to store a great many numbers in a file, and subsequently
read them back for further processing, it would be wasted effort
converting, say, the binarkl integer iU to its decimal
equivalent of 2147483647 for filing, then subsequently converting 2147483647
back to ettt for processing in memory. In doing this you
might drop or pick up bits wherever binary numbers do rot have precise
decimal equivalents. So the C library provides functions for wriling and
reading a sitream of bytes regardless of what they represent. As long as
you remember what you wrote to file you can read it back without
conversion, precisely as it was.

E}inary streams are especially useful for filing data structures such as
the personnel records defined on Page 127. The size of any such
structure is given by sizeof (#pe) where fpe is the type of the
structure { eg. sizeof (struct MyStruct)).

n = fwrite (b, size, count,

#include < stdio.h >

/¥ JUST A DEMONSTRATION %/
ifnf main { void

FILE x BinStream =
char PrintBuf [49 I
char Record [] = '
int Size = 36 + 1

e~y add 1 for the \8°

fwrite (Record, Size, 1, BinStream)3
read BinStream
into print bufter

rewind (BinStream);
Frgad (frintB#F, Size, 1, BinStream);
printf ("%s\n", PrintBuf),

fclose (BinStream); e’
’ rint the
; return g; pﬁ'nt bufter,

7: INPUT, OUTPUT 121

.
*
.
*

RA“DDA m int fseek Ignguét :ﬁ éo?:?I:Ein: g

gn the previous examples the files that have been written are rewound
efore being read. Bul access to a file can be more selective; you can
locate a conceptual ‘file pointer’ at any point in a file, then read the
record it points to, or write a record on the file starting at that position.
The pointer is located by the function fseek() and you can discover its
current position using ftell (). @ Functions fsetpos() and fgetpos() serve

a similar purpose.)

i seek (stream, offset, origin);

should relurn
name of
a stream

non-zero on
ﬂ'he origin may be located at the start of the file (at its first byte)
by SEEK_SET, or at the end of the file { one past its last byte) by
SEEK_END. The origin may be located at the current position of the file
pointer by SEEK_CUR. These three constants are defined in < stdioh > as

an enumeration:

enum { SEEK_SET, SEEK_CUR, SEEK_END };

e we

SEEK_SET
SEEK_CUR

SEEK_END

27 ou may use equivalent integers or provide a less clumsy enumeration
such as enum { start, current, end };

"l—jhe offset locates the file pointer relative to the origin. The offset is
expressed as a number of byles and may be positive or negative:
fseek { MyStream, 13, @) is depicted below:

© 1 23 45 6780910111213 14151617 18 19 20 21 22

3T T I T T T] LI

[TTTTTTIIx %
> annd Or1gi1 fOr

[E'he next fwrite() or fread() starts with the byte at the file pointer.

[1]
offset

‘Ehe offset for a text stream should be given either as zero or as a
value returned by ftell(). The value returned by ftell() is the number of
bytes from the start of the file to the file pointer.

r—> | = ftell (stream);

location of
fle pointer
from start

122 ILLUSTRATING C

DATABASE G amier 100 it oo Aeoiss Fat)

'ii'he following is a primitive database for names and addresses. The
program asks for a surname, then an address, then another name and
address, and so on until you enter EOF ({Clrl+Z in DOS). The program
then asks for a surname. When you enter one, the program searches the
datobase it has created and prints a name and address. If records have
the same surname, a/ associated addresses are printed. To stop the
program asking for names, enter EOF from the keyboard.

7% PRIMITIVE DATABASE x/
#include < stdio.h >
#include "STRINGY.H"

int main (void)
char p[2¢], Q[Gﬂ’], r[201; and retains it
long i, Point;

FILE = Dbase = fopen ("DBASEBIN", "w+");

7/ PART ONE: INPUT DATA x/ - <
for (Point=9; ; Point += 8¢) Name?
{ > Benson
printF ("Name?\n> "); ids‘;?s:?J. 2 Kingfisher Drive
KeyString (p, Lines, 13); Name?
if (feof (stdin)) > Williams
break i Address?
(zop) printf ("hddresstvn>) > Mre. T.E., 7 The Cottages
KeyString (g, Lines, 59)3 I
fwrite (' p, 28, 1, Dbase);
fwrite (q, 6@, t, Dbase);
} R
Who?
r* PART Two: 'NTERROGATE */ ;ien:o?f 2 Kingfisher Drive
gor (F) Ms. P. 97 Wentworth Avenue
printf ("Who?\n> "); iy

KeyString (r, Lines, 19)

if { feof (stdin)) ; fsets j
break ; ~

gor (i=2; i<Point ; i+=88)

Fseek (Dbase, i, SEEK_SET); <wdo/el ol
@ fread (p, 24, 1, Dbase);
i{F (Compare (r, eq, p, Equiv))

fread (q, 68, 1, Dbase);
printf ("%s\n", q)3

} } address 67 name 2¢ elc.

return 2

iWﬁ

7: INPUT, OUTPUT 123

EXERCISES

ﬂ Write a function, with fprintf () at its heart, to tabulate numbers.
Let its prototypebe:
void Tabulate (double Value, int Line, int Field, int Places);

Value identifies the next value to be printed

line is set @ if printing on the same line, 1 if on the next line
Field is the number of character positions in the complete Field
Places is the number of places after the decimal { zero signifying
none, and no point).

Tobulate (234, @, 18, 3) would print the resut on the same line
as the previous number, in the form sss234.0009 (where s
represents a space) . Tabulate (234, @, 18, ¢) would display
5555555234 0s an integer.

With this simple funclion you can produce complex and elegant
tabulations.

8 Gonvert one of your C programs that employs scanf() to using
gets() followed by sscanf (). Consult the return value on each call
to sscanf (). Display an error message if the number of matching
specifiers is wrong; arrange for a remedial line to be input by gets().

8 Gonvert another C program to using function GetNext() ({ defined
on Page 115) . You should find error conditions much easier to
handle than with gets() and sscanf ().

@ Lﬁhe concalenation uliity on Page 119 is badly designed. If you
nominate an existing file to receive the information, you lose the
current contents of that file without further warning. Reclify this
deficiency. Make the ulility ask if you really intend to lose the
current contents of the nominated file; offer the chance to retract.

8 ﬂmprove the database program on Page 123. The possibilities are
endless; man-years of effort are expended in producing saleable
address-book programs, but attempt the Following minimal
improvements. Make it possible to keep names and addresses in a
disk file on leaving the program, and make it possible to add
names and addresses in subsequent runs. Make it possible to delete
and modify names and addresses.

124 IHUSTRATING C

3
STRVCTURESHURIONS

"l_fhis chapter explains the concept of a structure as a
collection of variables, this collection including nested
structures if desired.

& structure can be handled in much the same way as a
varioble; you can copy a sltructure, assign to a struclure,
take the address of a structure with &, access the
members of a shructure. You may declare arrays of
structures. You can nominate a structure as a parameter
of a function or write a function that returns a structure.

?his chapter introduces structures by analogy with arrays.
he operators for accessing members are defined and
their use explained. Concepts are illustrated by an example
of a library list in which to search for a book if you
know its title or can remember only part of its title.

Drions and bitfields are introduced € a union is a
structure in which members share storage space).

Klaving described structures and unions it is possible to
define, fully, the syntax terms /e ond declaration. The
allowable syntax of aeclaration differs according to context,
so a separate diagram is drawn for each context.

Einally the chapler explains the idea of stacks and gives
an example of their use in converling simple algebraic
expressions to reverse Polish notation.

IRTRODYCINCESTRYCTVRES!

&&uch of information handling is about updating and sorting lists of
names and addresses. With each name and address may come other
information: an amount of money owing, a list of diseases survived, a
code indicating the subject's purchasing power or likelhood of signing an
order. In short, information comes as large sets of shructured sub-sets.

I}or a list of names and addresses you could define an array of
two-dimensional arrays (in other words a three-dimensional array) as
depicted below:

char Xpec [120] [41 [20]; each string
lerminated
\g
Xpec 101] o7 {ol... ...19]
[11 e 01| eF—>[RU[S[SIE[LILV] |]
oy Ei]j—r-MR. JAICIK [\
(27 e1—>2|a3] (KIENINIE|L| [R|O/W]\
an sy 31 e~ |H[oju[nplsp{1]Tc]V | | | |
arrays
0ol e [l... it
Lo1] eo—>[T W T[CIH[T]T]w@ NN
(1] e—>MR[s]. | [TIAIBIT[TIHIANY | |
(21| e+—=l4| [T[1]L[1]N]e] [R]1[D|6]E\V
[s1{ e—[C[A[TIF]o[RID]Y 1]
27 ou could use this scheme to sort names 7 -4
and addresses on various keys { surname, RUSSELL
town efc.)). You might display the complete s e Row
list of names and addresses as follows: HOUNDSDITOH
TWITCHIT
for (n = @; n<igd; ++n) MRS. TABITHA
for (line = @; line<4; ++line) 4 TILING RIDGE
printf ("\n%s", Xpec [n] [linel); CATFORD

surname, forename, house and street, town D must have the same
amount of storage allocated to it. And numbers, and sums of money,
have to be stored as character strings instead of integers, hence cannot
by used directly as sorting keys.

?ut this scheme has deficiencies. Arrays are too uniform; every item

‘Ehese deficiencies can be overcome using a structure instead of a
two-dimensional array. You may define a sfape to suit any particular
collection of entities to be stored. A structure may incorporate any type
of variable. It may also incorporate other structures { nested structures J).

ﬂhe address book above is re-defined as an array of structures
opposite.

{26 ILLUSTRATING C

NN e,
e L
struct
{

char Surname [12 1 ;
char Forename [24 1 ;
int House ;

char Street [13 1 ;
char Town [15 1 ;

Xpec [1290 1 ;

Members '

Of structure
defined

Xpec [100] defines an
array of 180 objects of
the shape declared

Xpec | Z K\ -
1 |.Surname Russell®

[e

[11

[2]

Displaying the list involves the
each member of the structure.

Xpec [1 1.

JEX

.Forename [Mr., Jacke . ..]
. House (243 I D23
.Street Kennel Row® . |,
.Town [Houndsditch¥ . |

[{7]

. Surname Twitchit® -

.Forename [Mrs., Tabithave =~ 1]

. House 4] 1
.Street [Tiling Ridge¥ .
. Town [Catfard®]

»M

dot operator (full stop }) for accessing

Town check on picture

for (n=¢; n < 188; ++n)

printf ("\n\n%s ", Xpec

printf ("\n\n%s, %s",Xpec[n].Surname, Xpec[n].Forename) ;
printf. ("\n\n%i, %s ", Xpec[n].House, Xpec[n].Street) ;

member
name

[n].Town) ; 7

Nt (%ussell, Mr. Jack

8: STRUCTURES, UNIONS

P

243 Kennel Row
Houndsditch

Twitchit, Mrs. Tabitha
4 Tiling Ridge
Catford

127

WSACEIO JSTRWCTWRES

mere is a declaration of a typical sha

definition of two objects, St and S2, o

AND UNIONS

of structure along with the
the shape declared.

S1
struct

.Name L |

. Numberl:]

char Name [20 1;
int Number ;

S1, S2
. S

.Name [

. Number:l

S2

@b jects St and S2 may be handled in some respects like scalar variables

and arrays. You may do the following:

Initiolize the members of
struclures in the mamner of
initialized arrays

Declare structures static,
extern, auto, as described on
Pages 136 to 137. An auto
structure may be initialized by

7 size must be

struct declared

char Name [28 1 ;

assignment.

Access the members of a
structure in much the same
manner as variables

Copy or assign an entire
structure as a unit

=

Take the address of a
structure

=

J int Number ;
St = { "Mo Niker"”, 123 1,
S2 = { "Pat Ronymic", 987 1;
= St.Number ;
St.Nurmmber = S2.Number ;
S2.Number = n ;
S2 = 51 ___[(sr)
p =&

printf ("%l" , (*xp).Number) ;

Define functions that have
structures as parameters @ this
depicts the invocation)

D}E‘ Fun (St) ;

Define functions that return a
complete structure (this
depicts the invocation)

E

M ou may not compare structures logically 2 5{F (8t == 82)Jj%v

OtherFun ("Jones" , 33) ;

"l—jhe above rules apply to wrions as well as to structures.

128

ILLOSTRATING C

JACCESSIOPERATORS Q M :»

@se of the dot operator for access to a member is demonsirated by
an earlier example, part of it reproduced below:

for (n=d; n < 186; ++n)

printf ("\n\n%s, %s", Xpec[n].Surname, Xpec[n].Forename) ;
printf ("\m\n%i, %s ", Xpec[n]l.House, Xpec[n].Street) ;
printf ("\n\n%s ", Xpec[n].Town) ;

Russell, Mr. Jack
243 Kennel Row
Houndsditch

lﬁ"he essential shape of each access expression is:

Xpec[n].Town;

refererce (o /
i

ﬂnstead of writing Xpec[n] as the reference to the structure we may
write:

* (Xpec + n)

I‘I_fhis demonsirates pointer notation as an alternative to array notation as
described on Page 84. So the access expression may be written:

(» (Xpec + n)).Town
(low precedenceg ;7

ﬁ}he outermost parentheses are essential because the dot binds more
tightly (has higher precedence) than the asterisk. Without the outermost
parentheses the expression would be treated as *((Xpec + n).Town)
which signifies a pointer to a member of an impossible ob ject.

ﬁ'o avoid the clumsiness of the dot expression, C provides the arrow
operator -> ({ minus sign followed by greater than Br p->a is short for
(*p).a So the access expression may be written:

(Xpec + n) -> Town

where the parentheses are needed because -> binds more tightly than +
@ without them it would say Xpec + (n -> Town)

“Ehe fragment of program at the top of the page may be re-wrillen as:

for (n=g; n < 19d; ++n)

printf ("\n\n%s, %s", (Xpec+n)->Surname, (Xpec+n)->Forename) ;
printf ("\n\n%i, %s ", (Xpec+n)->House, (Xpectn)->Sireet) ;
printf ("\n\n%s ", (Xpec+n)->Town) ;

8: STRUCTURES, UNIONS
129

STYLEJOrDECUARATION

‘Ehe full syntax for declaring an 'aggregate’ { structure, union,
enumeration) is defined on pages 136 and 137. It is possible to arrange
such a declaration in several ways, three of which are illustrated below.

make lag &
NESGD

ﬂ struct MyTag { int Ego; char Sweet[t6]; } ;
® |struct MyTag a, b;

quole &
declare objects

ﬂn the above arrangement a #pe of structure is defined and given a
tag. Subsequently (not necessarily on the next line) objects of the same
type may be declared by reference to the tag. These objects may then
be used much like variables: initialized, copied, pointed to, used as
arguments of functions and returned by functions.

"_l}erminology: Excessive use of the word 'lype’ causes confusion. I use

the synonym 'shape’ to avoid ambiguily wh