

6502 Instruction Set Guide

by Andrew John Jacobs

This is the printed version of the 6502 Instruction Set Guide

published by the late Andrew Jacobs on his website obelisk.me.uk

Edited by Dion Olsthoorn – October 2021

2

 3

Table of Contents

Introduction...5

6502 Basic Architecture ...6

The Registers ...7

The Instruction Set ...11

Addressing Modes ...15

Coding Algorithms..19

Instruction Reference ...31

4

 5

Introduction

Many software engineers beginning work today will only ever work

with high-level, object-oriented programming languages like Java and

C++. They will never know the deep joy (and massive frustration) of

taking on a microprocessor in the 'hand-to-hand' combat that is

assembly language programming.

It concerns me that some of the skills and tricks that where quite

common place when I started my career as code monkey, are

completely overlooked today. Some of the forum posts I see by

Computer Science and Electrical Engineering students make me

wonder if they still teach binary.

This guide contains a description of the 6502 microprocessor, its

instructions and assembly language. It also includes example

algorithms that show common techniques and tricks to produce tight,

compact code.

The content is split up into 6 sections:

• Architecture

describes the few basic details of the 6502 processor.

• Registers

goes over each of the 6502’s internal registers and their use.

• Instructions

gives a summary of whole instruction set.

• Addressing

describes each of the 6502 memory addressing modes.

• Algorithms

contains some examples of basic 6502 assembly coding.

• Reference

describes the complete instruction set in detail.

6

6502 Basic Architecture

The 6502 microprocessor is a relatively simple 8-bit CPU with only a

few internal registers capable of addressing at most 64Kb of memory

via its 16-bit address bus. The processor is little endian and expects

addresses to be stored in memory least significant byte first.

The first 256-byte page of memory ($0000-$00FF) is referred to as

'Zero Page' and is the focus of a number of special addressing modes

that result in shorter (and quicker) instructions or allow indirect

access to the memory. The second page of memory ($0100-$01FF) is

reserved for the system stack and which cannot be relocated.

The only other reserved locations in the memory map are the very last

6 bytes of memory $FFFA to $FFFF which must be programmed with

the addresses of the non-maskable interrupt handler ($FFFA/B), the

power on reset location ($FFFC/D) and the BRK/interrupt request

handler ($FFFE/F) respectively.

The 6502 does not have any special support of hardware devices so

they must be mapped to regions of memory in order to exchange data

with the hardware latches.

 7

The Registers

The 6502 has only a small number of registers compared to other

processors of the same era. This makes it especially challenging to

program as algorithms must make efficient use of both registers and

memory.

Program Counter

The program counter is a 16 bit register which points to the next

instruction to be executed. The value of program counter is modified

automatically as instructions are executed.

The value of the program counter can be modified by executing a

jump, a relative branch or a subroutine call to another memory

address or by returning from a subroutine or interrupt.

Stack Pointer

The processor supports a 256-byte stack located between $0100 and

$01FF. The stack pointer is an 8 bit register and holds the low 8 bits

of the next free location on the stack. The location of the stack is fixed

and cannot be moved.

Pushing bytes to the stack causes the stack pointer to be decremented.

Conversely pulling bytes causes it to be incremented.

The CPU does not detect if the stack is overflowed by excessive

pushing or pulling operations and will most likely result in the

program crashing.

Accumulator

The 8-bit accumulator is used all arithmetic and logical operations

(with the exception of increments and decrements). The contents of

the accumulator can be stored and retrieved either from memory or

the stack.

Most complex operations will need to use the accumulator for

arithmetic and efficient optimization of its use is a key feature of time

critical routines.

8

Index Register X

The 8-bit index register is most commonly used to hold counters or

offsets for accessing memory. The value of the X register can be

loaded and saved in memory, compared with values held in memory

or incremented and decremented.

The X register has one special function. It can be used to get a copy of

the stack pointer or change its value.

Index Register Y

The Y register is similar to the X register in that it is available for

holding counter or offsets memory access and supports the same set

of memory load, save and compare operations as wells as increments

and decrements. It has no special functions.

Processor Status

As instructions are executed a set of processor flags are set or clear to

record the results of the operation. This flags and some additional

control flags are held in a special status register. Each flag has a

single bit within the register.

Instructions exist to test the values of the various bits, to set or clear

some of them and to push or pull the entire set to or from the stack.

• Carry Flag

The carry flag is set if the last operation caused an overflow

from bit 7 of the result or an underflow from bit 0. This

condition is set during arithmetic, comparison and during

logical shifts. It can be explicitly set using the 'Set Carry Flag'

(SEC) instruction and cleared with 'Clear Carry Flag' (CLC).

• Zero Flag

The zero flag is set if the result of the last operation as was

zero.

 9

• Interrupt Disable

The interrupt disable flag is set if the program has executed a

'Set Interrupt Disable' (SEI) instruction. While this flag is set

the processor will not respond to interrupts from devices until

it is cleared by a 'Clear Interrupt Disable' (CLI) instruction.

• Decimal Mode

While the decimal mode flag is set the processor will obey the

rules of Binary Coded Decimal (BCD) arithmetic during

addition and subtraction. The flag can be explicitly set using

'Set Decimal Flag' (SED) and cleared with 'Clear Decimal

Flag' (CLD).

Note that only two instructions are affected by the D flag:

ADC and SBC.

• Break Command

The break command bit is set when a BRK instruction has

been executed and an interrupt has been generated to process

it.

• Overflow Flag

The overflow flag is set during arithmetic operations if the

result has yielded an invalid 2's complement result (e.g.

adding to positive numbers and ending up with a negative

result: 64 + 64 => -128). It is determined by looking at the

carry between bits 6 and 7 and between bit 7 and the carry

flag.

• Negative Flag

The negative flag is set if the result of the last operation had

bit 7 set to a one.

10

 11

The Instruction Set

The 6502 has a relatively basic set of instructions, many having

similar functions (e.g. memory access, arithmetic, etc.). The following

sections list the complete set of 56 instructions in functional groups.

Load/Store Operations

These instructions transfer a single byte between memory and one of

the registers. Load operations set the negative (N) and zero (Z) flags

depending on the value of transferred. Store operations do not affect

the flag settings.

LDA Load Accumulator N,Z
LDX Load X Register N,Z
LDY Load Y Register N,Z
STA Store Accumulator
STX Store X Register
STY Store Y Register

Register Transfers

The contents of the X and Y registers can be moved to or from the

accumulator, setting the negative (N) and zero (Z) flags as

appropriate.

TAX Transfer accumulator to X N,Z
TAY Transfer accumulator to Y N,Z
TXA Transfer X to accumulator N,Z
TYA Transfer Y to accumulator N,Z

Stack Operations

The 6502 microprocessor supports a 256-byte stack fixed between

memory locations $0100 and $01FF. A special 8-bit register, S, is

used to keep track of the next free byte of stack space. Pushing a byte

on to the stack causes the value to be stored at the current free

location (e.g. $0100,S) and then the stack pointer is post decremented.

Pull operations reverse this procedure.

12

The stack register can only be accessed by transferring its value to or

from the X register. Its value is automatically modified by push/pull

instructions, subroutine calls and returns, interrupts and returns from

interrupts.

TSX Transfer stack pointer to X N,Z
TXS Transfer X to stack pointer
PHA Push accumulator on stack
PHP Push processor status on stack
PLA Pull accumulator from stack N,Z
PLP Pull processor status from stack All

Logical

The following instructions perform logical operations on the contents

of the accumulator and another value held in memory. The BIT

instruction performs a logical AND to test the presence of bits in the

memory value to set the flags but does not keep the result.

AND Logical AND N,Z
EOR Exclusive OR N,Z
ORA Logical Inclusive OR N,Z
BIT Bit Test N,V,Z

Arithmetic

The arithmetic operations perform addition and subtraction on the

contents of the accumulator. The compare operations allow the

comparison of the accumulator and X or Y with memory values.

ADC Add with Carry N,V,Z,C
SBC Subtract with Carry N,V,Z,C
CMP Compare accumulator N,Z,C
CPX Compare X register N,Z,C
CPY Compare Y register N,Z,C

 13

Increments & Decrements

Increment or decrement a memory location or one of the X or Y

registers by one setting the negative (N) and zero (Z) flags as

appropriate.

INC Increment a memory location N,Z
INX Increment the X register N,Z
INY Increment the Y register N,Z
DEC Decrement a memory location N,Z
DEX Decrement the X register N,Z
DEY Decrement the Y register N,Z

Shifts

Shift instructions cause the bits within either a memory location or the

accumulator to be shifted by one bit position. The rotate instructions

use the contents if the carry flag (C) to fill the vacant position

generated by the shift and to catch the overflowing bit. The arithmetic

and logical shifts shift in an appropriate 0 or 1 bit as appropriate but

catch the overflow bit in the carry flag (C).

ASL Arithmetic Shift Left N,Z,C
LSR Logical Shift Right N,Z,C
ROL Rotate Left N,Z,C
ROR Rotate Right N,Z,C

Jumps & Calls

The following instructions modify the program counter causing a

break to normal sequential execution. The JSR instruction pushes the

old PC onto the stack before changing it to the new location allowing

a subsequent RTS to return execution to the instruction after the call.

JMP Jump to another location
JSR Jump to a subroutine
RTS Return from subroutine

14

Branches

Branch instructions break the normal sequential flow of execution by

changing the program counter if a specified condition is met. All the

conditions are based on examining a single bit within the processor

status.

BCC Branch if carry flag clear
BCS Branch if carry flag set
BEQ Branch if zero flag set
BMI Branch if negative flag set
BNE Branch if zero flag clear
BPL Branch if negative flag clear
BVC Branch if overflow flag clear
BVS Branch if overflow flag set

Branch instructions use relative address to identify the target

instruction if they are executed. As relative addresses are stored using

a signed 8-bit byte the target instruction must be within 126 bytes

before the branch or 128 bytes after the branch.

Status Flag Changes

The following instructions change the values of specific status flags.

CLC Clear carry flag C
CLD Clear decimal mode flag D
CLI Clear interrupt disable flag I
CLV Clear overflow flag V
SEC Set carry flag C
SED Set decimal mode flag D
SEI Set interrupt disable flag I

System Functions

The remaining instructions perform useful but rarely used functions.

BRK Force an interrupt B
NOP No Operation
RTI Return from Interrupt All

 15

Addressing Modes

The 6502 processor provides several ways in which memory locations

can be addressed. Some instructions support several different modes

while others may only support one. In addition, the two index

registers cannot always be used interchangeably. This lack of

orthogonality in the instruction set is one of the features that makes

the 6502 trickier to program well.

Implicit

For many 6502 instructions the source and destination of the

information to be manipulated is implied directly by the function of

the instruction itself and no further operand needs to be specified.

Operations like 'Clear Carry Flag' (CLC) and 'Return from Subroutine'

(RTS) are implicit.

Accumulator

Some instructions have an option to operate directly upon the

accumulator. The programmer specifies this by using a special

operand value, 'A'. For example:

 LSR A ;Logical shift right one bit
 ROR A ;Rotate right one bit

Immediate

Immediate addressing allows the programmer to directly specify an 8-

bit constant within the instruction. It is indicated by a '#' symbol

followed by an numeric expression. For example:

 LDA #10 ;Load 10 ($0A) into the accumulator
 LDX #LO LABEL ;Load the LSB of a 16 bit address into X
 LDY #HI LABEL ;Load the MSB of a 16 bit address into Y

Zero Page

An instruction using zero page addressing mode has only an 8-bit

address operand. This limits it to addressing only the first 256 bytes of

memory (e.g. $0000 to $00FF) where the most significant byte of the

16

address is always zero. In zero-page mode only the least significant

byte of the address is held in the instruction making it shorter by one

byte (important for space saving) and one less memory fetch during

execution (important for speed).

An assembler will automatically select zero page addressing mode if

the operand evaluates to a zero-page address and the instruction

supports the mode (not all do).

 LDA $00 ;Load accumulator from $00
 ASL ANSWER ;Shift labelled location ANSWER left

Zero Page,X

The address to be accessed by an instruction using indexed zero page

addressing is calculated by taking the 8-bit zero-page address from

the instruction and adding the current value of the X register to it. For

example if the X register contains $0F and the instruction LDA $80,X

is executed then the accumulator will be loaded from $008F (e.g. $80

+ $0F => $8F).

NB: The address calculation wraps around if the sum of the base

address and the register exceed $FF. If we repeat the last example but

with $FF in the X register then the accumulator will be loaded from

$007F (e.g. $80 + $FF => $7F) and not $017F.

 STY $10,X ;Save the Y register at location on zero page
 AND TEMP,X ;Logical AND accumulator with a zero page value

Zero Page,Y

The address to be accessed by an instruction using indexed zero page

addressing is calculated by taking the 8-bit zero page address from the

instruction and adding the current value of the Y register to it. This

mode can only be used with the LDX and STX instructions.

 LDX $10,Y ;Load the X register from a location on zero page
 STX TEMP,Y ;Store the X register in a location on zero page

 17

Relative

Relative addressing mode is used by branch instructions (e.g. BEQ,

BNE, etc.) which contain a signed 8 bit relative offset (e.g. -128 to

+127) which is added to program counter if the condition is true. As

the program counter itself is incremented during instruction execution

by two the effective address range for the target instruction must be

with -126 to +129 bytes of the branch.

 BEQ LABEL ;Branch if zero flag set to LABEL
 BNE *+4 ;Skip over the following 2 byte instruction

Absolute

Instructions using absolute addressing contain a full 16 bit address to

identify the target location.

 JMP $1234 ;Jump to location $1234
 JSR WIBBLE ;Call subroutine WIBBLE

Absolute,X

The address to be accessed by an instruction using X register indexed

absolute addressing is computed by taking the 16-bit address from the

instruction and added the contents of the X register. For example if X

contains $92 then an STA $2000,X instruction will store the

accumulator at $2092 (e.g. $2000 + $92).

 STA $3000,X ;Store accumulator between $3000 and $30FF
 ROR CRC,X ;Rotate right one bit

Absolute,Y

The Y register indexed absolute addressing mode is the same as the

previous mode only with the contents of the Y register added to the

16-bit address from the instruction.

 AND $4000,Y ;Perform a logical AND with a byte of memory
 STA MEM,Y ;Store accumulator in memory

18

Indirect

JMP is the only 6502 instruction to support indirection. The

instruction contains a 16-bit address which identifies the location of

the least significant byte of another 16-bit memory address which is

the real target of the instruction.

For example, if location $0120 contains $FC and location $0121

contains $BA then the instruction JMP ($0120) will cause the next

instruction execution to occur at $BAFC (e.g. the contents of $0120

and $0121).

 JMP ($FFFC) ;Force a power on reset
 JMP (TARGET) ;Jump via a labelled memory area

Indexed Indirect

Indexed indirect addressing is normally used in conjunction with a

table of address held on zero page. The address of the table is taken

from the instruction and the X register added to it (with zero-page

wrap around) to give the location of the least significant byte of the

target address.

 LDA ($40,X) ;Load a byte indirectly from memory
 STA (MEM,X) ;Store accumulator indirectly into memory

Indirect Indexed

Indirect indexed addressing is the most common indirection mode

used on the 6502. In instruction contains the zero-page location of the

least significant byte of 16 bit address. The Y register is dynamically

added to this value to generated the actual target address for

operation.

 LDA ($40),Y ;Load a byte indirectly from memory
 STA (DST),Y ;Store accumulator indirectly into memory

 19

Coding Algorithms

As you can see from the preceding descriptions the instruction set of

the 6502 is quite basic, having only simple 8-bit operations. Complex

operations such as 16 or 32 bit arithmetic and memory transfers have

to be performed by executing a sequence of simpler operations.

Standard Conventions

The 6502 processor expects addresses to be stored in 'little endian'

order, with the least significant byte first and the most significant byte

second. If the value stored was just a number (e.g. game score, etc.)

then we could write code to store and manipulate it in 'big endian'

order if we wished, however the algorithms presented here always use

'little endian' order so that they may be applied either to simple

numeric values or addresses without modification.

The terms 'big endian' and 'little endian' come from Gulliver's

Travels. The people of Lilliput and Blefuscu have been fighting a

war over which end of a boiled egg one should crack to eat it. In

computer terms it refers to whether the most or least significant

portion of a binary number is stored in the lower memory address.

To be safe the algorithms usually start by setting processor flags and

registers to safe initial values. If you need to squeeze a few extra

bytes or cycles out of the routine you might be able to remove some

of these initializations depending on the preceding instructions.

Simple Memory Operations

Probably the most fundamental memory operation is clearing an area

of memory to an initial value, such as zero. As the 6502 cannot

directly move values to memory clearing even a small region of

memory requires the use of a register. Any of A, X or Y could be used

to hold the initial value, but in practice A is normally used because it

can be quickly saved and restored (with PHA and PLA) leaving X and

Y free for application use.

 ; Clearing 16 bits of memory
 LDA #0 ;Load constant zero into A
 STA MEM+0 ;Then clear the least significant byte
 STA MEM+1 ;... followed by the most significant

20

Moving a small quantity of data requires a register to act as a

temporary container during the transfer. Again, any of A, X, or Y may

be used, but as before using A as the temporary register is often the

most practical.

 ; Moving 16 bits of memory
 LDA SRC+0 ;Move the least significant byte
 STA DST+0
 LDA SRC+1 ;Then the most significant
 STA DST+1

Another basic operation is setting a 16-bit word to an initial constant

value. The easiest way to do this is to load the low and high portions

into A one at a time and store them.

Logical Operations

The simplest forms of operation on binary values are the logical

AND, logical OR and exclusive OR illustrated by the following truth

tables.

These results can be summarized in English as:

• The result of a logical AND is true (1) if and only if both

inputs are true, otherwise it is false (0).

• The result of a logical OR is true (1) if either of the inputs its

true, otherwise it is false (0).

• The result of an exclusive OR is true (1) if and only if one

input is true and the other is false, otherwise it is false (0).

Logical AND (AND)

 0 1

0 0 0

1 0 1

Logical OR (ORA)

 0 1

0 0 1

1 1 1

Exclusive OR (EOR)

 0 1

0 0 1

1 1 0

 21

The tables show result of applying these operations on two one-bit

values but as the 6502 comprises of eight-bit registers and memory

each instruction will operate on two eight-bit values simultaneously as

shown below.

 Logical AND

(AND)
 Logical OR

(ORA)
 Exclusive OR

(EOR)

Value 1 0 0 1 1 0 0 1 1

 0 0 1 1 0 0 1 1

 0 0 1 1 0 0 1 1

Value 2 0 1 0 1 0 1 0 1

 0 1 0 1 0 1 0 1

 0 1 0 1 0 1 0 1

Result 0 0 0 1 0 0 0 1

 0 1 1 1 0 1 1 1

 0 1 1 0 0 1 1 0

It is important to understand the properties and practical applications

of each of these operations as they are extensively used in other

algorithms.

• Logical AND operates as a filter and is often used to select a

subset of bits from a value (e.g. the status flags from a

peripheral control chip).

• Logical OR allows bits to be inserted into an existing value

(e.g. to set control flags in a peripheral control chip).

• Exclusive OR allows selected bits to be set or inverted.

In the 6502 these operations are implemented by the AND, ORA and

EOR instructions. One of the values to be operated on will be the

current contents of the accumulator, the other is in memory either as

an immediate value or at a specified location. The result of the

operation is placed in the accumulator and the zero and negative flags

are set accordingly.

 ; Example logical operations
 AND #$0F ;Filter out all but the least 4 bits
 ORA BITS,X ;Insert some bits from a table
 EOR (DATA),Y ;EOR against some data

22

A very common use of the EOR instruction is to calculate the

'complement' (or logical NOT) of a value. This involves inverting

every bit in the value and is most easily calculated by exclusively

ORing against an all ones value.

 ; Calculate the complement
 EOR #$FF

Shifts & Rotates

The shift and rotate instructions allow the bits within either the

accumulator or a memory location to be moved by one place either up

(left) or down (right). When the bits are moved a new value will be

needed to fill the vacant position created at one end of the value, and

similarly the bit displaced at the opposite end will need to be caught

and stored.

Both shifts and rotates catch the displaced bit in the carry flag but

they differ in how they fill the vacant position; shifts will always fill

the vacant bit with a zero whilst a rotate will fill it with the value of

the carry flag as it was at the start of the instruction.

For example, the following diagram shows the result of applying an

'Arithmetic Shift Left' (ASL) to the value $4D to give $9A.

 +---+---+---+---+---+---+---+---+
Initial: | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
 +---+---+---+---+---+---+---+---+
 | | | | | | | |
 / / / / / / / /
 / / / / / / / / 0
 / / / / / / / / /
 / | | | | | | | |
 / v v v v v v v v
 +---+---+---+---+---+---+---+---+
Result: C=0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
 +---+---+---+---+---+---+---+---+

 23

Whist the following shows the result of applying a 'Rotate Left'

(ROL) to the same value, but assuming that the carry contained the

value one.

 +---+---+---+---+---+---+---+---+
Initial: | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | C=1
 +---+---+---+---+---+---+---+---+
 | | | | | | | | /
 / / / / / / / / /
 / / / / / / / / /
 / / / / / / / / /
 / | | | | | | | |
 / v v v v v v v v
 +---+---+---+---+---+---+---+---+
Result: C=0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
 +---+---+---+---+---+---+---+---+

Shifting the bits within a value (and introducing a zero as the least

significant bit) has the effect of multiplying its value by two. In order

to apply this multiplication to a value larger than a single byte we use

ASL to shift the first byte and then ROL all the subsequent bytes as

necessary using the carry flag to temporarily hold the displaced bits as

they are moved from one byte to the next.

 ; Shift a 16bit value by one place left (= multiply by two)
 ASL MEM+0 ;Shift the LSB
 ROL MEM+1 ;Rotate the MSB

The behavior of the right shift as rotates follows the same pattern. For

example, we can apply a 'Logical Shift Right' (LSR) to the value $4D

to give $26.

 +---+---+---+---+---+---+---+---+
Initial: | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
 +---+---+---+---+---+---+---+---+
 | | | | | | | |
 \ \ \ \ \ \ \ \
 0 \ \ \ \ \ \ \ \
 \ \ \ \ \ \ \ \ \
 | | | | | | | | \
 v v v v v v v v \
 +---+---+---+---+---+---+---+---+
Result: | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | C=1
 +---+---+---+---+---+---+---+---+

24

Or a 'Rotate Right' (ROR) of the same value, but assuming that the

carry contained the value one to give $A6.

 +---+---+---+---+---+---+---+---+
Initial: C=1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
 +---+---+---+---+---+---+---+---+
 \ | | | | | | | |
 \ \ \ \ \ \ \ \ \
 \ \ \ \ \ \ \ \ \
 \ \ \ \ \ \ \ \ \
 | | | | | | | | \
 v v v v v v v v \
 +---+---+---+---+---+---+---+---+
Result: | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | C=1
 +---+---+---+---+---+---+---+---+

Not surprisingly if left shifts multiply a value by two then right shifts

do an unsigned division by two. Again, if we are applying the division

to a multi-byte value, we will typically use LSR on the first byte (the

MSB this time) and ROR on all subsequent bytes.

 ; Shift a 16 bit value by one place right (= divide by two)
 LSR MEM+1 ;Shift the MSB
 ROR MEM+0 ;Rotate the LSB

There are a number of applications for shifts and rotates, not least the

coding of generic multiply and divide algorithms which are discussed

later.

As was pointed out earlier right shifting a value two divide it by two

only works on unsigned values. This is because the LSR is will

always place a zero in the most significant bit of the MSB. To make

this algorithm work for all two complement coded values we need

to ensure that value of this bit is copied back into itself to keep the

value the same sign. We can use another shift to achieve this.

 ; Divide a signed 16 bit value by two
 LDA MEM+1 ;Load the MSB
 ASL A ;Copy the sign bit into C
 ROR MEM+1 ;And back into the MSB
 ROR MEM+0 ;Rotate the LSB as normal

 25

Addition & Subtraction

The 6502 processor provides 8-bit addition and subtraction

instructions and a carry/borrow flag that is used to propagate the carry

bit between operations.

To implement a 16-bit addition the programmer must code two pairs

of additions; one for the least significant bytes and one for the most

significant bytes. The carry flag must be cleared before the first

addition to ensure that an additional increment isn't performed.

 ; 16 bit Binary Addition
 CLC ;Ensure carry is clear
 LDA VLA+0 ;Add the two least significant bytes
 ADC VLB+0
 STA RES+0 ;... and store the result
 LDA VLA+1 ;Add the two most significant bytes
 ADC VLB+1 ;... and any propagated carry bit
 STA RES+1 ;... and store the result

Subtraction follows the same pattern but the carry must be set before

the first pair of bytes are subtracted to get the correct result.

 ; 16 bit Binary Subtraction
 SEC ;Ensure carry is set
 LDA VLA+0 ;Subtract the two least significant bytes
 SBC VLB+0
 STA RES+0 ;... and store the result
 LDA VLA+1 ;Subtract the two most significant bytes
 SBC VLB+1 ;... and any propagated borrow bit
 STA RES+1 ;... and store the result

Both the addition and subtraction algorithm can be extended to 32 bits

by repeating the LDA/ADC/STA or LDA/SBC/STA pattern for two

further bytes worth of data.

Negation

The traditional approach to negating a two’s complement number is to

reverse all the bits (by EORing with $FF) and add one as shown

below.

 ; 8 bit Binary Negation
 CLC ;Ensure carry is clear
 EOR #$FF ;Invert all the bits
 ADC #1 ;... and add one

26

This technique works well with a single byte already held in the

accumulator but not with bigger numbers. With these it is easier just

to subtract them from zero.

 ; 16 bit Binary Negation
 SEC ;Ensure carry is set
 LDA #0 ;Load constant zero
 SBC SRC+0 ;... subtract the least significant byte
 STA DST+0 ;... and store the result
 LDA #0 ;Load constant zero again
 SBC SRC+1 ;... subtract the most significant byte
 STA DST+1 ;... and store the result

Decimal Arithmetic

The behavior of the ADC and SBC instructions can be modified by

setting or clearing the decimal mode flag in the processor status

register. Normally decimal mode is disabled and ADC/SBC perform

simple binary arithmetic (e.g. $99 + $01 => $9A Carry = 0), but if the

flag is set with a SED instruction the processor will perform binary

coded decimal arithmetic instead (e.g. $99 + $01 => $00 Carry = 1).

To make the 16-bit addition/subtraction code work in decimal mode

simply include an SED at the start and a CLD at the end (to restore

the processor to normal).

 ; 16 bit Binary Code Decimal Addition
 SED ;Set decimal mode flag
 CLC ;Ensure carry is clear
 LDA VLA+0 ;Add the two least significant bytes
 ADC VLB+0
 STA RES+0 ;... and store the result
 LDA VLA+1 ;Add the two most significant bytes
 ADC VLB+1 ;... and any propagated carry bit
 STA RES+1 ;... and store the result
 CLD ;Clear decimal mode

 27

Another use for BCD is in the conversion of binary values to decimal

ones. Some algorithms perform this conversion by counting the

number of times that 10000's, 1000's, 100's, 10's and 1's can be

subtracted from the binary value before it underflows, but I normally

use a simple fixed loop that shifts the bits out of the binary value one

at a time and adds it to an intermediate result that is being doubled (in

BCD) on each iteration.

; Convert an 16 bit binary value into a 24bit BCD value
BIN2BCD:
 LDA #0 ;Clear the result area
 STA RES+0
 STA RES+1
 STA RES+2
 LDX #16 ;Setup the bit counter
 SED ;Enter decimal mode
_LOOP:
 ASL VAL+0 ;Shift a bit out of the binary
 ROL VAL+1 ;... value
 LDA RES+0 ;And add it into the result, doubling
 ADC RES+0 ;... it at the same time
 STA RES+0
 LDA RES+1
 ADC RES+1
 STA RES+1
 LDA RES+2
 ADC RES+2
 STA RES+2
 DEX ;More bits to process?
 BNE _LOOP
 CLD ;Leave decimal mode

28

Increments & Decrements

Assembly programs frequently use memory-based counters that

occasionally need incrementing or decrementing by one. One way to

achieve this would be to load the LSB and MSB in turn and add or

subtract one with the ADC/SBC instructions, but the 6502 has a more

efficient way to do this using INC and DEC.

Incrementing is straight forward; we just increment the least

significant byte until the result becomes zero. This indicates that the

calculation has wrapped round (e.g. $FF + $01 => $00) and an

increment to the most significant byte is needed.

; Increment a 16 bit value by one
 INC MEM+0 ;Increment the LSB
 BNE _DONE ;If the result was not zero we're done
 INC MEM+1 ;Increment the MSB if LSB wrapped round
_DONE:
 EQU *

Decrementing is a little trickier because we need to know when the

least significant byte is about to underflow from $00 to $FF. The

answer is to test it first by loading it into the accumulator to set the

processor flags.

; Decrement a 16 bit value by one
 LDA MEM+0 ;Test if the LSB is zero
 BNE _SKIP ;If it isn't we can skip the next instruction
 DEC MEM+1 ;Decrement the MSB when the LSB will underflow
_SKIP:
 DEC MEM+0 ;Decrement the LSB

 29

Complex Memory Transfers

Moving data from one place to another is a common operation. If the

amount of data to moved is 256 bytes or less and the source and target

locations of the data are fixed then a simple loop around an indexed

LDA followed by an indexed STA is the most efficient. Note that

whilst both the X and Y registers can be used in indexed addressing

modes an asymmetry in the 6502's instruction means that X is the

better register to use if one or both of the memory areas resides on

zero page.

; Move 256 bytes or less in a forward direction
 LDX #0 ;Start with the first byte
_LOOP:
 LDA SRC,X ;Move it
 STA DST,X
 INX ;Then bump the index ...
 CPX #LEN ;... until we reach the limit
 BNE _LOOP

The corresponding code moving the last byte first is as follows:

; Move 256 bytes or less in a reverse direction
 LDX #LEN ;Start with the last byte
_LOOP :

DEX ;Bump the index
 LDA SRC,X ;Move a byte
 STA DST,X
 CPX #0 ;... until all bytes have moved
 BNE _LOOP

If the amount is even smaller (128 bytes or less) then we can

eliminate the comparison against the limit and use the settings of the

flags after a DEX to determine if the loop has finished.

; Move 128 bytes or less in a reverse direction
 LDX #LEN-1 ;Start with the last byte
_LOOP:
 LDA SRC,X ;Move it
 STA DST,X
 DEX ;Then bump the index ...
 BPL _LOOP ;... until all bytes have moved

30

To create a completely generic memory transfer we must change to

using indirect indexed addressing to access memory and use all the

registers. The following code shows a forward transferring algorithm

which first moves complete pages of 256 bytes followed by any

remaining fragments of smaller size.

_MOVFWD:
LDY #0 ;Initialise the index

 LDX LEN+1 ;Load the page count
 BEQ _FRAG ;... Do we only have a fragment?
_PAGE:

LDA (SRC),Y ;Move a byte in a page transfer
 STA (DST),Y
 INY ;And repeat for the rest of the
 BNE _PAGE ;... page
 INC SRC+1 ;Then bump the src and dst addresses
 INC DST+1 ;... by a page
 DEX ;And repeat while there are more
 BNE _PAGE ;... pages to move
_FRAG CPY:

LEN+0 ;Then while the index has not reached
 BEQ _DONE ;... the limit
 LDA (SRC),Y ;Move a fragment byte
 STA (DST),Y
 INY ;Bump the index and repeat
 BNE _FRAG\?
_DONE:

EQU * ;All done

 31

Instruction Reference

ADC
page 32

AND
page 33

ASL
page 34

BCC
page 35

BCS
page 36

BEQ
page 37

BIT
page 38

BMI
page 39

BNE
page 40

BPL
page 41

BRK
page 42

BVC
page 43

BVS
page 44

CLC
page 45

CLD
page 46

CLI
page 47

CLV
page 48

CMP
page 49

CPX
page 50

CPY
page 51

DEC
page 52

DEX
page 53

DEY
page 54

EOR
page 55

INC
page 56

INX
page 57

INY
page 58

JMP
page 59

JSR
page 60

LDA
page 61

LDX
page 62

LDY
page 63

LSR
page 64

NOP
page 65

ORA
page 66

PHA
page 67

PHP
page 68

PLA
page 69

PLP
page 70

ROL
page 71

ROR
page 72

RTI
page 73

RTS
page 74

SBC
page 75

SEC
page 76

SED
page 77

SEI
page 78

STA
page 79

STX
page 80

STY
page 81

TAX
page 82

TAY
page 83

TSX
page 84

TXA
page 85

TXS
page 86

TYA
page 87

32

ADC - Add with Carry

A,Z,C,N = A+M+C

This instruction adds the contents of a memory location to the

accumulator together with the carry bit. If overflow occurs the carry

bit is set, this enables multiple byte addition to be performed.

Processor Status after use:

C Carry Flag Set if overflow in bit 7
Z Zero Flag Set if A = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Set if sign bit is incorrect
N Negative Flag Set if bit 7 set

Addressing Mode Opcode Bytes Cycles
Immediate $69 2 2
Zero Page $65 2 3
Zero Page,X $75 2 4
Absolute $6D 3 4
Absolute,X $7D 3 4 (+1 if page crossed)
Absolute,Y $79 3 4 (+1 if page crossed)
(Indirect,X) $61 2 6
(Indirect),Y $71 2 5 (+1 if page crossed)

See also: SBC

 33

AND - Logical AND

A,Z,N = A&M

A logical AND is performed, bit by bit, on the accumulator contents

using the contents of a byte of memory.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Set if A = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 set

Addressing Mode Opcode Bytes Cycles
Immediate $29 2 2
Zero Page $25 2 3
Zero Page,X $35 2 4
Absolute $2D 3 4
Absolute,X $3D 3 4 (+1 if page crossed)
Absolute,Y $39 3 4 (+1 if page crossed)
(Indirect,X) $21 2 6
(Indirect),Y $31 2 5 (+1 if page crossed)

See also: EOR, ORA

34

ASL - Arithmetic Shift Left

A,Z,C,N = M*2 or M,Z,C,N = M*2

This operation shifts all the bits of the accumulator or memory

contents one bit left. Bit 0 is set to 0 and bit 7 is placed in the carry

flag. The effect of this operation is to multiply the memory contents

by 2 (ignoring 2's complement considerations), setting the carry if the

result will not fit in 8 bits.

Processor Status after use:

C Carry Flag Set to contents of old bit 7
Z Zero Flag Set if A = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of the result is set

Addressing Mode Opcode Bytes Cycles
Accumulator $0A 1 2
Zero Page $06 2 5
Zero Page,X $16 2 6
Absolute $0E 3 6
Absolute,X $1E 3 7

See also: LSR, ROL, ROR

 35

BCC - Branch if Carry Clear

If the carry flag is clear then add the relative displacement to the

program counter to cause a branch to a new location.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Relative $90 2 2 (+1 if branch succeeds

+2 if to a new page)

See also: BCS

36

BCS - Branch if Carry Set

If the carry flag is set then add the relative displacement to the

program counter to cause a branch to a new location.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Relative $B0 2 2 (+1 if branch succeeds

+2 if to a new page)

See also: BCC

 37

BEQ - Branch if Equal

If the zero flag is set then add the relative displacement to the

program counter to cause a branch to a new location.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Relative $F0 2 2 (+1 if branch succeeds

+2 if to a new page)

See also: BNE

38

BIT - Bit Test

A & M, N = M7, V = M6

This instruction is used to test if one or more bits are set in a target

memory location. The mask pattern in A is ANDed with the value in

memory to set or clear the zero flag, but the result is not kept. Bits 7

and 6 of the value from memory are copied into the N and V flags.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Set if the result if the AND is zero
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Set to bit 6 of the memory value
N Negative Flag Set to bit 7 of the memory value

Addressing Mode Opcode Bytes Cycles
Zero Page $24 2 3
Absolute $2C 3 4

 39

BMI - Branch if Minus

If the negative flag is set then add the relative displacement to the

program counter to cause a branch to a new location.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Relative $30 2 2 (+1 if branch succeeds

+2 if to a new page)

See also: BPL

40

BNE - Branch if Not Equal

If the zero flag is clear then add the relative displacement to the

program counter to cause a branch to a new location.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Relative $D0 2 2 (+1 if branch succeeds

+2 if to a new page)

See also: BEQ

 41

BPL - Branch if Positive

If the negative flag is clear then add the relative displacement to the

program counter to cause a branch to a new location.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Relative $10 2 2 (+1 if branch succeeds

+2 if to a new page)

See also: BMI

42

BRK - Force Interrupt

The BRK instruction forces the generation of an interrupt request. The

program counter and processor status are pushed on the stack then the

IRQ interrupt vector at $FFFE/F is loaded into the PC and the break

flag in the status set to one.

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Set to 1
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Implied $00 1 7

The interpretation of a BRK depends on the operating system. On the

BBC Microcomputer it is used by language ROMs to signal run time

errors but it could be used for other purposes (e.g. calling operating

system functions, etc.).

 43

BVC - Branch if Overflow Clear

If the overflow flag is clear then add the relative displacement to the

program counter to cause a branch to a new location.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Relative $50 2 2 (+1 if branch succeeds

+2 if to a new page)

See also: BVS

44

BVS - Branch if Overflow Set

If the overflow flag is set then add the relative displacement to the

program counter to cause a branch to a new location.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Relative $70 2 2 (+1 if branch succeeds

+2 if to a new page)

See also: BVC

 45

CLC - Clear Carry Flag

C = 0

Set the carry flag to zero.

C Carry Flag Set to 0
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Implied $18 1 2

See also: SEC

46

CLD - Clear Decimal Mode

D = 0

Sets the decimal mode flag to zero.

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Set to 0
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Implied $D8 1 2

NB:

The state of the decimal flag is uncertain when the CPU is powered

up and it is not reset when an interrupt is generated. In both cases you

should include an explicit CLD to ensure that the flag is cleared

before performing addition or subtraction.

See also: SED

 47

CLI - Clear Interrupt Disable

I = 0

Clears the interrupt disable flag allowing normal interrupt requests to

be serviced.

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Set to 0
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Implied $58 1 2

See also: SEI

48

CLV - Clear Overflow Flag

V = 0

Clears the overflow flag.

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Set to 0
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Implied $B8 1 2

 49

CMP - Compare

Z,C,N = A-M

This instruction compares the contents of the accumulator with

another memory held value and sets the zero and carry flags as

appropriate.

Processor Status after use:

C Carry Flag Set if A >= M
Z Zero Flag Set if A = M
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of the result is set

Addressing Mode Opcode Bytes Cycles
Immediate $C9 2 2
Zero Page $C5 2 3
Zero Page,X $D5 2 4
Absolute $CD 3 4
Absolute,X $DD 3 4 (+1 if page crossed)
Absolute,Y $D9 3 4 (+1 if page crossed)
(Indirect,X) $C1 2 6
(Indirect),Y $D1 2 5 (+1 if page crossed)

See also: CPX, CPY

50

CPX - Compare X Register

Z,C,N = X-M

This instruction compares the contents of the X register with another

memory held value and sets the zero and carry flags as appropriate.

Processor Status after use:

C Carry Flag Set if X >= M
Z Zero Flag Set if X = M
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of the result is set

Addressing Mode Opcode Bytes Cycles
Immediate $E0 2 2
Zero Page $E4 2 3
Absolute $EC 3 4

See also: CMP, CPY

 51

CPY - Compare Y Register

Z,C,N = Y-M

This instruction compares the contents of the Y register with another

memory held value and sets the zero and carry flags as appropriate.

Processor Status after use:

C Carry Flag Set if Y >= M
Z Zero Flag Set if Y = M
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of the result is set

Addressing Mode Opcode Bytes Cycles
Immediate $C0 2 2
Zero Page $C4 2 3
Absolute $CC 3 4

See also: CMP, CPX

52

DEC - Decrement Memory

M,Z,N = M-1

Subtracts one from the value held at a specified memory location

setting the zero and negative flags as appropriate.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Set if result is zero
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of the result is set

Addressing Mode Opcode Bytes Cycles
Zero Page $C6 2 5
Zero Page,X $D6 2 6
Absolute $CE 3 6
Absolute,X $DE 3 7

See also: DEX, DEY

 53

DEX - Decrement X Register

X,Z,N = X-1

Subtracts one from the X register setting the zero and negative flags

as appropriate.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Set if X is zero
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of X is set

Addressing Mode Opcode Bytes Cycles
Implied $CA 1 2

See also: DEC, DEY

54

DEY - Decrement Y Register

Y,Z,N = Y-1

Subtracts one from the Y register setting the zero and negative flags

as appropriate.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Set if Y is zero
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of Y is set

Addressing Mode Opcode Bytes Cycles
Implied $88 1 2

See also: DEC, DEX

 55

EOR - Exclusive OR

A,Z,N = A^M

An exclusive OR is performed, bit by bit, on the accumulator contents

using the contents of a byte of memory.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Set if A = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 set

Addressing Mode Opcode Bytes Cycles
Immediate $49 2 2
Zero Page $45 2 3
Zero Page,X $55 2 4
Absolute $4D 3 4
Absolute,X $5D 3 4 (+1 if page crossed)
Absolute,Y $59 3 4 (+1 if page crossed)
(Indirect,X) $41 2 6
(Indirect),Y $51 2 5 (+1 if page crossed)

See also: AND, ORA

56

INC - Increment Memory

M,Z,N = M+1

Adds one to the value held at a specified memory location setting the

zero and negative flags as appropriate.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Set if result is zero
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of the result is set

Addressing Mode Opcode Bytes Cycles
Zero Page $E6 2 5
Zero Page,X $F6 2 6
Absolute $EE 3 6
Absolute,X $FE 3 7

See also: INX, INY

 57

INX - Increment X Register

X,Z,N = X+1

Adds one to the X register setting the zero and negative flags as

appropriate.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Set if X is zero
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of X is set

Addressing Mode Opcode Bytes Cycles
Implied $E8 1 2

See also: INC, INY

58

INY - Increment Y Register

Y,Z,N = Y+1

Adds one to the Y register setting the zero and negative flags as

appropriate.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Set if Y is zero
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of Y is set

Addressing Mode Opcode Bytes Cycles
Implied $C8 1 2

See also: INC, INX

 59

JMP - Jump

Sets the program counter to the address specified by the operand.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Absolute $4C 3 3
Indirect $6C 3 5

NB:

An original 6502 has does not correctly fetch the target address if the

indirect vector falls on a page boundary (e.g. $xxFF where xx is any

value from $00 to $FF). In this case fetches the LSB from $xxFF as

expected but takes the MSB from $xx00. This is fixed in some later

chips like the 65SC02 so for compatibility always ensure the indirect

vector is not at the end of the page.

60

JSR - Jump to Subroutine

The JSR instruction pushes the address (minus one) of the return point

on to the stack and then sets the program counter to the target memory

address.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Absolute $20 3 6

See also: RTS

 61

LDA - Load Accumulator

A,Z,N = M

Loads a byte of memory into the accumulator setting the zero and

negative flags as appropriate.

C Carry Flag Not affected
Z Zero Flag Set if A = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of A is set

Addressing Mode Opcode Bytes Cycles
Immediate $A9 2 2
Zero Page $A5 2 3
Zero Page,X $B5 2 4
Absolute $AD 3 4
Absolute,X $BD 3 4 (+1 if page crossed)
Absolute,Y $B9 3 4 (+1 if page crossed)
(Indirect,X) $A1 2 6
(Indirect),Y $B1 2 5 (+1 if page crossed)

See also: LDX, LDY

62

LDX - Load X Register

X,Z,N = M

Loads a byte of memory into the X register setting the zero and

negative flags as appropriate.

C Carry Flag Not affected
Z Zero Flag Set if X = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of X is set

Addressing Mode Opcode Bytes Cycles
Immediate $A2 2 2
Zero Page $A6 2 3
Zero Page,Y $B6 2 4
Absolute $AE 3 4
Absolute,Y $BE 3 4 (+1 if page crossed)

See also: LDA, LDY

 63

LDY - Load Y Register

Y,Z,N = M

Loads a byte of memory into the Y register setting the zero and

negative flags as appropriate.

C Carry Flag Not affected
Z Zero Flag Set if Y = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of Y is set

Addressing Mode Opcode Bytes Cycles
Immediate $A0 2 2
Zero Page $A4 2 3
Zero Page,X $B4 2 4
Absolute $AC 3 4
Absolute,X $BC 3 4 (+1 if page crossed)

See also: LDA, LDX

64

LSR - Logical Shift Right

A,C,Z,N = A/2 or M,C,Z,N = M/2

Each of the bits in A or M is shift one place to the right. The bit that

was in bit 0 is shifted into the carry flag. Bit 7 is set to zero.

Processor Status after use:

C Carry Flag Set to contents of old bit 0
Z Zero Flag Set if result = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of the result is set

Addressing Mode Opcode Bytes Cycles
Accumulator $4A 1 2
Zero Page $46 2 5
Zero Page,X $56 2 6
Absolute $4E 3 6
Absolute,X $5E 3 7

See also: ASL, ROL, ROR

 65

NOP - No Operation

The NOP instruction causes no changes to the processor other than

the normal incrementing of the program counter to the next

instruction.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Implied $EA 1 2

66

ORA - Logical Inclusive OR

A,Z,N = A|M

An inclusive OR is performed, bit by bit, on the accumulator contents

using the contents of a byte of memory.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Set if A = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 set

Addressing Mode Opcode Bytes Cycles
Immediate $09 2 2
Zero Page $05 2 3
Zero Page,X $15 2 4
Absolute $0D 3 4
Absolute,X $1D 3 4 (+1 if page crossed)
Absolute,Y $19 3 4 (+1 if page crossed)
(Indirect,X) $01 2 6
(Indirect),Y $11 2 5 (+1 if page crossed)

See also: AND, EOR

 67

PHA - Push Accumulator

Pushes a copy of the accumulator on to the stack.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Implied $48 1 3

See also: PLA

68

PHP - Push Processor Status

Pushes a copy of the status flags on to the stack.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Implied $08 1 3

See also: PLP

 69

PLA - Pull Accumulator

Pulls an 8 bit value from the stack and into the accumulator. The zero

and negative flags are set as appropriate.

C Carry Flag Not affected
Z Zero Flag Set if A = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of A is set

Addressing Mode Opcode Bytes Cycles
Implied $68 1 4

See also: PHA

70

PLP - Pull Processor Status

Pulls an 8 bit value from the stack and into the processor flags. The

flags will take on new states as determined by the value pulled.

Processor Status after use:

C Carry Flag Set from stack
Z Zero Flag Set from stack
I Interrupt Disable Set from stack
D Decimal Mode Flag Set from stack
B Break Command Set from stack
V Overflow Flag Set from stack
N Negative Flag Set from stack

Addressing Mode Opcode Bytes Cycles
Implied $28 1 4

See also: PHP

 71

ROL - Rotate Left

Move each of the bits in either A or M one place to the left. Bit 0 is

filled with the current value of the carry flag whilst the old bit 7

becomes the new carry flag value.

Processor Status after use:

C Carry Flag Set to contents of old bit 7
Z Zero Flag Set if A = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of the result is set

Addressing Mode Opcode Bytes Cycles
Accumulator $2A 1 2
Zero Page $26 2 5
Zero Page,X $36 2 6
Absolute $2E 3 6
Absolute,X $3E 3 7

See also: ASL, LSR, ROR

72

ROR - Rotate Right

Move each of the bits in either A or M one place to the right. Bit 7 is

filled with the current value of the carry flag whilst the old bit 0

becomes the new carry flag value.

Processor Status after use:

C Carry Flag Set to contents of old bit 0
Z Zero Flag Set if A = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of the result is set

Addressing Mode Opcode Bytes Cycles
Accumulator $6A 1 2
Zero Page $66 2 5
Zero Page,X $76 2 6
Absolute $6E 3 6
Absolute,X $7E 3 7

See also ASL, LSR, ROL

 73

RTI - Return from Interrupt

The RTI instruction is used at the end of an interrupt processing

routine. It pulls the processor flags from the stack followed by the

program counter.

Processor Status after use:

C Carry Flag Set from stack
Z Zero Flag Set from stack
I Interrupt Disable Set from stack
D Decimal Mode Flag Set from stack
B Break Command Set from stack
V Overflow Flag Set from stack
N Negative Flag Set from stack

Addressing Mode Opcode Bytes Cycles
Implied $40 1 6

74

RTS - Return from Subroutine

The RTS instruction is used at the end of a subroutine to return to the

calling routine. It pulls the program counter (minus one) from the

stack.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Implied $60 1 6

See also: JSR

 75

SBC - Subtract with Carry

A,Z,C,N = A-M-(1-C)

This instruction subtracts the contents of a memory location to the

accumulator together with the not of the carry bit. If overflow occurs

the carry bit is clear, this enables multiple byte subtraction to be

performed.

Processor Status after use:

C Carry Flag Clear if overflow in bit 7
Z Zero Flag Set if A = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Set if sign bit is incorrect
N Negative Flag Set if bit 7 set

Addressing Mode Opcode Bytes Cycles
Immediate $E9 2 2
Zero Page $E5 2 3
Zero Page,X $F5 2 4
Absolute $ED 3 4
Absolute,X $FD 3 4 (+1 if page crossed)
Absolute,Y $F9 3 4 (+1 if page crossed)
(Indirect,X) $E1 2 6
(Indirect),Y $F1 2 5 (+1 if page crossed)

See also: ADC

76

SEC - Set Carry Flag

C = 1

Set the carry flag to one.

C Carry Flag Set to 1
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Implied $38 1 2

See also: CLC

 77

SED - Set Decimal Flag

D = 1

Set the decimal mode flag to one.

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Set to 1
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Implied $F8 1 2

See also: CLD

78

SEI - Set Interrupt Disable

I = 1

Set the interrupt disable flag to one.

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Set to 1
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Implied $78 1 2

See also: CLI

 79

STA - Store Accumulator

M = A

Stores the contents of the accumulator into memory.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Zero Page $85 2 3
Zero Page,X $95 2 4
Absolute $8D 3 4
Absolute,X $9D 3 5
Absolute,Y $99 3 5
(Indirect,X) $81 2 6
(Indirect),Y $91 2 6

See also: STX, STY

80

STX - Store X Register

M = X

Stores the contents of the X register into memory.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Zero Page $86 2 3
Zero Page,Y $96 2 4
Absolute $8E 3 4

See also: STA, STY

 81

STY - Store Y Register

M = Y

Stores the contents of the Y register into memory.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Zero Page $84 2 3
Zero Page,X $94 2 4
Absolute $8C 3 4

See also: STA, STX

82

TAX - Transfer Accumulator to X

X = A

Copies the current contents of the accumulator into the X register and

sets the zero and negative flags as appropriate.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Set if X = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of X is set

Addressing Mode Opcode Bytes Cycles
Implied $AA 1 2

See also: TXA

 83

TAY - Transfer Accumulator to Y

Y = A

Copies the current contents of the accumulator into the Y register and

sets the zero and negative flags as appropriate.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Set if Y = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of Y is set

Addressing Mode Opcode Bytes Cycles
Implied $A8 1 2

See also: TYA

84

TSX - Transfer Stack Pointer to X

X = S

Copies the current contents of the stack register into the X register

and sets the zero and negative flags as appropriate.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Set if X = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of X is set

Addressing Mode Opcode Bytes Cycles
Implied $BA 1 2

See also: TXS

 85

TXA - Transfer X to Accumulator

A = X

Copies the current contents of the X register into the accumulator and

sets the zero and negative flags as appropriate.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Set if A = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of A is set

Addressing Mode Opcode Bytes Cycles
Implied $8A 1 2

See also: TAX

86

TXS - Transfer X to Stack Pointer

S = X

Copies the current contents of the X register into the stack register.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Not affected
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Not affected

Addressing Mode Opcode Bytes Cycles
Implied $9A 1 2

See also: TSX

 87

TYA - Transfer Y to Accumulator

A = Y

Copies the current contents of the Y register into the accumulator and

sets the zero and negative flags as appropriate.

Processor Status after use:

C Carry Flag Not affected
Z Zero Flag Set if A = 0
I Interrupt Disable Not affected
D Decimal Mode Flag Not affected
B Break Command Not affected
V Overflow Flag Not affected
N Negative Flag Set if bit 7 of A is set

Addressing Mode Opcode Bytes Cycles
Implied $98 1 2

See also: TAY

88

